首页> 外文会议>Artificial neural networks in pattern recognition >Quad-Tree Based Image Segmentation and Feature Extraction to Recognize Online Handwritten Bangla Characters
【24h】

Quad-Tree Based Image Segmentation and Feature Extraction to Recognize Online Handwritten Bangla Characters

机译:基于四叉树的图像分割和特征提取以识别在线手写孟加拉字符

获取原文
获取原文并翻译 | 示例

摘要

In this paper, three different feature extraction strategies along with their all possible combinations have been discussed in detail for the recognition of online handwritten Bangla basic characters. Applying a quad-tree based image segmentation approach the target character has been dissected for the extraction of features. Out of these three techniques, one is computing area feature (using composite Simpson's rule) while other two are extracted local (mass distribution and chord length) features. Authors have also investigated optimal depth of the quad-tree (while segmenting an image), at which classifier reveals its best performance. The current experiment has been tested on 10,000 character dataset. Sequential Minimal Optimization (SMO) produces highest recognition accuracy of 98.5 % when all three feature vectors are combined.
机译:在本文中,已经详细讨论了三种不同的特征提取策略及其所有可能的组合,用于识别在线手写孟加拉语基本字符。应用基于四叉树的图像分割方法,目标字符已被解剖以提取特征。在这三种技术中,一种是计算区域特征(使用合成辛普森规则),而另两种是提取局部特征(质量分布和弦长)。作者还研究了四叉树的最佳深度(在对图像进行分割的同时),分类器显示了其最佳性能。目前的实验已在10,000个字符的数据集上进行了测试。当所有三个特征向量组合时,顺序最小优化(SMO)产生98.5%的最高识别精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号