首页> 外文会议>Artificial Neural Networks in Engineering Conference (ANNIE'98) held November 1-4, 1998, In St.Louis, Missouri, U.S.A. >Identification of cutting conditions by using an analytical model and genetic algorithms for micro-end-milling operations
【24h】

Identification of cutting conditions by using an analytical model and genetic algorithms for micro-end-milling operations

机译:使用分析模型和遗传算法识别切削条件,以进行微细加工

获取原文
获取原文并翻译 | 示例

摘要

Identification of cutting conditions simplifies monitoring of machining operations to estimate tool wear and detection of breakage. An analytical model is introduced to simulate micro-end-milling operations more accurately than the conventional models by considering the feed rate. A genetic algorithm-based cutting condition identification program was developed to estimate the entry and exit angles. In all the studied cases, the program estimated the entry and exit angles with less than 3
机译:识别切削条件可简化对加工操作的监控,以估计刀具磨损和破损检测。通过考虑进给速度,引入了一种分析模型,以比传统模型更准确地模拟微细铣削操作。开发了一种基于遗传算法的切削条件识别程序,以估计出入角。在所有研究的案例中,程序估计的进入和退出角度均小于3

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号