首页> 外文会议>Artificial Neural Networks in Engineering Conference (ANNIE'98) held November 1-4, 1998, In St.Louis, Missouri, U.S.A. >The errors-in-variables cost function for learning neural networks with noisy inputs
【24h】

The errors-in-variables cost function for learning neural networks with noisy inputs

机译:用于学习带有噪声输入的神经网络的变量误差成本函数

获取原文
获取原文并翻译 | 示例

摘要

Currently, most learning algorithms for neural network modelling are based on the Output Error approach, using a least squares cost function. This method provides good results when the network is trained with noisy output data, but special care must be taken when training with noisy input data, or when both inputs and outputs contain noise if the deriven NN parameters will ge used with exact inputs, as is the case in simulations or inversing control. This paper introduces a novel cost function for learning NN with noisy inputs, based on the Errors-In-Variables cost function. A learning scheme is presented and examples are given demonstrating the imporved performance in Neural Network curve fitting, at the cost of performing more calculations.
机译:当前,大多数用于神经网络建模的学习算法都是基于输出误差方法,并使用最小二乘成本函数。当使用嘈杂的输出数据训练网络时,此方法提供了良好的结果,但是当使用嘈杂的输入数据进行训练时,或者如果派生的NN参数将与精确的输入一起使用时,当输入和输出都包含噪声时,必须特别注意。模拟或逆向控制中的情况。本文介绍了一种基于错误中变量成本函数的新颖的具有噪声输入的神经网络学习成本函数。提出了一个学习方案,并给出了示例来证明神经网络曲线拟合的改进性能,但需要进行更多的计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号