首页> 外文会议>Artificial intelligence and robotics >Near Infrared Spectroscopy Drug Discrimination Method Based on Stacked Sparse Auto-Encoders Extreme Learning Machine
【24h】

Near Infrared Spectroscopy Drug Discrimination Method Based on Stacked Sparse Auto-Encoders Extreme Learning Machine

机译:基于堆叠稀疏自动编码器极限学习机的近红外光谱药物识别方法

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a method for drug discrimination with near infrared spectroscopy based on SSAE-ELM. ELM instead of the BP was introduced to fine-tuning SSAE, which can reduce the training time of SSAE and improve the practical application of the deep learning network. The work in the paper used near infrared diffuse reflectance spectroscopy to identify Aluminum-plastic packaging of cefixime tablets drugs from different manufacturers as examples to verify the proposed method. Specifically, we adopted SSAE-ELM to binary and multi-class classification discriminations with different sizes of drug dataset. Extensive experiments were conducted to compare the performances of the proposed method with ELM, BP, SVM and SWELM. The results indicate that the proposed method not only can obtain high discrimination accuracy with superior stability but also reduce the training time of SSAE in binary and multi-class classification. Therefore, the SSAE-ELM classifier can achieve an optimal and generalized solution for spectroscopy identification.
机译:本文介绍了一种基于SSAE-ELM的近红外光谱药物鉴别方法。将ELM代替BP引入了对SSAE的微调,这可以减少SSAE的训练时间,并改善深度学习网络的实际应用。本文中的工作使用近红外漫反射光谱法确定了不同制造商生产的头孢克肟片药物的铝塑包装,以验证所提出的方法。具体来说,我们将SSAE-ELM应用于不同数据集大小的二元和多类分类判别。进行了广泛的实验,以比较该方法与ELM,BP,SVM和SWELM的性能。结果表明,该方法不仅具有较高的判别精度和稳定性,而且减少了二元和多类分类中SSAE的训练时间。因此,SSAE-ELM分类器可以实现最佳的光谱识别通用解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号