School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China;
School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China;
School of Automation, Beijing University of Posts Telecommunications, Beijing 100876, China;
School of Automation, Beijing University of Posts Telecommunications, Beijing 100876, China;
School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China;
School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China;
School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China;
National Institutes for Food and Drug Control, Beijing 100050, China;
National Institutes for Food and Drug Control, Beijing 100050, China;
School of Computer and Information Security, Guilin University of Electronic Technology, Guilin 541004, China,School of Automation, Beijing University of Posts Telecommunications, Beijing 100876, China;
Near infrared spectroscopy (NIRS); Stacked sparse auto-encoders extreme learning machine (SSAE-ELM); Back propagation neural network (BP) Summation wavelet extreme learning machine (SWELM); Drug classification;
机译:基于堆积稀疏自动编码器的半监督深度学习方法,使用RNA-SEQ数据进行癌症预测
机译:基于改进局部接受领域的极端学习机算法和可见红外光谱法的煤炭分类方法
机译:基于可见红外光谱和改进的多层极限学习机的煤炭分类方法
机译:基于堆积稀疏自动编码的近红外光谱药物辨别方法极端学习机
机译:功能近红外光谱的机器学习方法
机译:基于改进局部的煤炭分类方法基于接受的基于领域的极端学习机算法和可见红外线光谱学
机译:校正:使用激光诱导的击穿光谱辨别鼻咽癌血清结合极限学习机和随机森林方法
机译:解决基于机器学习的网络入侵检测系统中极端类不平衡的方法。