首页> 外文会议>Artificial intelligence and computational intelligence >Face Recognition Using a Modified Fuzzy Linear Discriminant Analysis Method
【24h】

Face Recognition Using a Modified Fuzzy Linear Discriminant Analysis Method

机译:改进的模糊线性判别分析方法的人脸识别

获取原文
获取原文并翻译 | 示例

摘要

Linear discriminant analysis (LDA) is a simple but widely used algorithm in the area of face recognition. However, it has some shortcomings in which the relationship of each face to a class is assumed to be crisp. This algorithm was modified by incorporating the membership grade of each face pattern into the calculation of the between-class and within-class scatter matrices, which is known as Fuzzy Fisherface. The Fuzzy Fisherface method introduces a gradual level of assignment of each face pattern to a class by using a membership grading based upon the k-Nearest Neighbor (KNN) algorithm, and it obtains an obviously better performance than the LDA method. However, when computing the fuzzy memberships, only the belong-to information is considered while the not-belong-to information is ignored. In this paper, a further modified fuzzy linear discriminant analysis method is proposed to solve this problem. The experiments were performed on the ORL and FERET face databases, and the results show consistent improvement in the recognition rate.
机译:线性判别分析(LDA)是在人脸识别领域中使用简单但广泛使用的算法。然而,它具有一些缺点,其中每个面孔与一个类别的关系被认为是清晰的。通过将每个人脸模式的隶属度合并到类间和类内散点矩阵的计算中对该算法进行了修改,这被称为“模糊Fisherface”。 Fuzzy Fisherface方法通过使用基于k最近邻(KNN)算法的隶属度分级,将每个面部模式的分配等级逐步引入到一类中,并且其获得的性能明显优于LDA方法。但是,在计算模糊隶属度时,仅考虑属于信息,而忽略不属于信息。为了解决这个问题,本文提出了一种进一步改进的模糊线性判别分析方法。实验是在ORL和FERET人脸数据库上进行的,结果显示出识别率的持续提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号