首页> 外文会议>Artificial intelligence and computational intelligence >An Auto-Adapted Method to Generate Pairwise Test Data Set
【24h】

An Auto-Adapted Method to Generate Pairwise Test Data Set

机译:一种自动生成配对测试数据集的方法

获取原文
获取原文并翻译 | 示例

摘要

The pairwise test data set generation is one of key issues of combinatorial testing. This paper presents a novel auto-adapted method to generate a pairwise test data set. In this method, all test cases are made at a time, which is called "all-tests-at-a-time". Firstly, generate a certain number of test data sets; these test data sets have the same number of test cases. Secondly, chose the best data set and check whether it satisfy the requirements, if not ,go to next step, else the best is selected and the algorithm is end. Thirdly, update every data set: calculate the "repeat number" of each test case in a data set, chose two or three test cases according to the "repeat number"; update the selected test cases relies on "main factors" of each data set. Moreover, the classic examples are used to illustrate the performance of the proposed method. Compared with the existing algorithms, this paper provides an effective pairwise test suite generation method which updates test cases depend on the data set's coverage not any one independent case; it takes into the relationship of every test case consideration not like the traditional methods which also find the current best case. It can help the data set improve its coverage quickly.
机译:成对测试数据集的生成是组合测试的关键问题之一。本文提出了一种新的自适应方法来生成成对的测试数据集。在这种方法中,所有测试用例都是一次完成的,称为“一次所有测试”。首先,生成一定数量的测试数据集;这些测试数据集具有相同数量的测试用例。其次,选择最佳数据集并检查其是否满足要求,如果不满足,则进行下一步,否则选择最佳数据集并结束算法。第三,更新每个数据集:计算数据集中每个测试用例的“重复号”,根据“重复号”选择两个或三个测试用例;更新所选测试用例依赖于每个数据集的“主要因素”。此外,经典示例用于说明所提出方法的性能。与现有算法相比,本文提供了一种有效的成对测试套件生成方法,该方法可以根据数据集的覆盖范围而不是任何独立的案例来更新测试案例。它不像传统方法那样考虑到每个测试用例的关系,传统方法也可以找到当前的最佳用例。它可以帮助数据集快速提高其覆盖范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号