【24h】

Vertex Sparsifiers: New Results from Old Techniques

机译:顶点稀疏器:旧技术带来的新结果

获取原文
获取原文并翻译 | 示例

摘要

Given a capacitated graph G = (V, E) and a set of terminals K U V, how should we produce a graph H only on the terminals K so that every (multi-commodity) flow between the terminals in G could be supported in H with low congestion, and vice versa? (Such a graph H is called a flow-sparsifier for G.) What if we want H to be a "simple" graph? What if we allow H to be a convex combination of simple graphs? Improving on results of Moitra [FOCS 2009] and Leighton and Moitra [STOC 2010], we give efficient algorithms for constructing: (a) a flow-sparsifier H that maintains congestion up to a factor of O(log k/log log k), where k = |K|. (b) a convex combination of trees over the terminals K that maintains congestion up to a factor of O(log k), (c) for a planar graph G, a convex combination of planar graphs that maintains congestion up to a constant factor. This requires us to give a new algorithm for the 0-extension problem, the first one in which the preimages of each terminal are connected in G. Moreover, this result extends to minor-closed families of graphs. Our bounds immediately imply improved approximation guarantees for several terminal-based cut and ordering problems.
机译:给定一个电容图G =(V,E)和一组端子KUV,我们如何仅在端子K上产生图H,以便在H中支持G中端子之间的每个(多商品)流动低拥挤,反之亦然? (这样的图H称为G的流分配器。)如果我们希望H成为“简单”图怎么办?如果我们允许H为简单图的凸组合怎么办?通过对Moitra [FOCS 2009]和Leighton and Moitra [STOC 2010]的结果进行改进,我们提供了有效的算法来构建:(a)流量拥堵器H,其拥塞保持为O(log k / log log k) ,其中k = | K |。 (b)终端K上的树的凸组合将拥塞维持到因子O(log k),(c)平面图G的平面图的凸组合将拥塞维持到恒定因子。这就要求我们给出一种新的算法来解决0扩展问题,第一个算法是将每个终端的原像连接到G中。此外,该结果还扩展到图的次闭合族。我们的边界立即暗示改进了针对某些基于端子的切割和订购问题的近似保证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号