【24h】

Improved Pseudorandom Generators for Depth 2 Circuits

机译:改进的深度2电路伪随机发生器

获取原文
获取原文并翻译 | 示例

摘要

We prove the existence of a poly(n,m)-time computable pseudorandom generator which "1/poly(n, m)-fools" DNFs with n variables and m terms, and has seed length O(log~2 nm 2 log log nm). Previously, the best pseudorandom generator for depth-2 circuits had seed length O(log~3 nm), and was due to Bazzi (FOCS 2007). It follows from our proof that a l/m~(O(log mn))-biased distribution 1/poly(nm)-ioos DNFs with m terms and n variables. For inverse polynomial distinguishing probability this is nearly tight because we show that for every m, S there is a 1/m~(Ω(log 1/δ))-biased distribution X and a DNF φ with m terms such that φ is not δ-fooled by X. For the case of read-once DNFs, we show that seed length O(logmn ? log 1/δ) suffices, which is an improvement for large δ. It also follows from our proof that a l/m~(O(log 1/δ))-biased distribution δ-fools all read-once DNF with m terms. We show that this result too is nearly tight, by constructing a l/m~(Ω(log 1/δ))-biased distribution that does not δ-fool a certain m-term read-once DNF. DNF, pseudorandom generators, small bias spaces
机译:我们证明了存在一个具有n个变量和m个项的“ 1 / poly(n,m)-fools” DNF的poly(n,m)时间可计算伪随机发生器,并且其种子长度为O(log〜2 nm 2 log对数nm)。以前,深度2电路的最佳伪随机发生器的种子长度为O(log〜3 nm),这归功于Bazzi(FOCS 2007)。从我们的证明可以得出,具有m个项和n个变量的l / m〜(O(log mn))偏分布1 / poly(nm)-ioos DNF。对于逆多项式判别概率,这几乎是紧密的,因为我们表明,对于每m个,S都有一个1 / m〜(Ω(log 1 /δ))偏置的分布X和一个Dφφ,其中m个项使得φ不δ受X欺骗。对于一次读取的DNF,我们证明种子长度O(logmn?log 1 /δ)足够,这对于大δ而言是一个改进。从我们的证明中也可以得出,由l / m〜(O(log 1 /δ))偏向的分布δ使所有一次读取的DNF具有m个项。我们显示出,通过构造一个l / m〜(Ω(log 1 /δ))偏向的分布,该结果也几乎是紧密的,该分布不会δ欺骗某个m项一次读取的DNF。 DNF,伪随机数发生器,小偏差空间

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号