首页> 外文会议>Approximation, randomization, and combinatorial optimization : Algorithms and techniques >Approximation Algorithms for the Bottleneck Asymmetric Traveling Salesman Problem
【24h】

Approximation Algorithms for the Bottleneck Asymmetric Traveling Salesman Problem

机译:瓶颈非对称旅行商问题的近似算法

获取原文
获取原文并翻译 | 示例

摘要

We present the first nontrivial approximation algorithm for the bottleneck asymmetric traveling salesman problem. Given an asymmetric metric cost between n vertices, the problem is to find a Hamilto-nian cycle that minimizes its bottleneck (or maximum-length edge) cost. We achieve an O(logn/log logn) approximation performance guarantee by giving a novel algorithmic technique to shortcut Eulerian circuits while bounding the lengths of the shortcuts needed. This allows us to build on the recent result of Asadpour, Goemans, Madry, Oveis Gha-ran, and Saberi to obtain this guarantee. Furthermore, we show how our technique yields stronger approximation bounds in some cases, such as the bounded orientable genus case studied by Oveis Gharan and Saberi.
机译:我们提出了瓶颈非对称旅行商问题的第一个非平凡逼近算法。给定n个顶点之间的度量成本不对称,问题在于找到一个最小化其瓶颈(或最大长度边沿)成本的Hamilto-nian循环。通过为快捷方式欧拉电路提供一种新颖的算法技术,同时限制所需的快捷方式的长度,我们实现了O(logn / log logn)近似性能保证。这使我们可以基于Asadpour,Goemans,Madry,Oveis Gha-ran和Saberi的最新结果来获得此保证。此外,我们展示了我们的技术在某些情况下如何产生更强的逼近界,例如Oveis Gharan和Saberi研究的有界可定向属。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号