首页> 外文会议>Applied simulation and modelling >NEURAL NETWORKS FOR ESTIMATING NET ECOSYSTEM CO_2 EXCHANGE USING INCOMPLETE EDDY COVARIANCE DATA
【24h】

NEURAL NETWORKS FOR ESTIMATING NET ECOSYSTEM CO_2 EXCHANGE USING INCOMPLETE EDDY COVARIANCE DATA

机译:使用不完整的涡度协方差数据估算净生态系统CO_2交换的神经网络

获取原文
获取原文并翻译 | 示例

摘要

Handling of missing eddy covariance (EC) data isrnnecessary to construct daily and annual sums of netrnecosystem CO2 exchange (NEE). This study aims atrnevaluating three different types of artificial neuralrnnetwork methods (ANNs), namely multi-layer perceptronrn(MLP), support vector regression (SVR) and selforganizingrnmap (SOM), for the estimation of NEE valuesrnin EC data. The performance of the methods is examinedrnwith realistic missing EC data patterns by means ofrnseveral numerical performance indices. In general, thernresults obtained clearly show the high accuracy of ANNs,rnas they yielded the highest accuracies with SVR andrnMLP. The results also suggest that the NEE time seriesrncould be accurately estimated, even when frequent, largerndata gaps exist in the EC series.
机译:为了构建netrnecosystem CO2交换(NEE)的每日和年度总和,需要处理涡流协方差(EC)缺失数据。这项研究旨在评估三种不同类型的人工神经网络方法(ANN),即多层感知器(MLP),支持向量回归(SVR)和自组织映射(SOM),以估计EC数据中的NEE值。通过数个数值性能指标,在缺少实际EC数据模式的情况下检查了方法的性能。总的来说,获得的结果清楚地表明了人工神经网络的高准确度,它们对SVR和rnMLP的准确性最高。结果还表明,即使在EC系列中存在频繁,较大的数据缺口时,也可以准确估计NEE时间序列。

著录项

  • 来源
    《Applied simulation and modelling》|2009年|p.112-117|共6页
  • 会议地点 Palma de Mallorca(ES);Palma de Mallorca(ES)
  • 作者单位

    Department of Environmental Science, University of KuopiornP.O. Box 1627, FI-70211 Kuopio, Finlandrnharri.niska@uku.fi;

    Department of Environmental Science, University of KuopiornP.O. Box 1627, FI-70211 Kuopio, Finlandrnnarasinha.shurpali@uku.fi;

    Department of Environmental Science, University of KuopiornP.O. Box 1627, FI-70211 Kuopio, Finland;

    Department of Environmental Science, University of KuopiornP.O. Box 1627, FI-70211 Kuopio, Finland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程模拟;
  • 关键词

    modelling; imputation; missing data; and neural networks;

    机译:建模;输入;缺少数据;以及神经网络;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号