首页> 外文会议>応用物理学会春季学術講演会;応用物理学会 >Molecular Orbitals Gating for a Single Long, Rigid, Planar Molecular Wire
【24h】

Molecular Orbitals Gating for a Single Long, Rigid, Planar Molecular Wire

机译:单个长而刚性的平面分子线的分子轨道门控

获取原文

摘要

We have reported that carbon-bridged oligo(phenylenevinylene)s (COPVn) serve as effective molecular wires as demonstrated by photoinduced electron transfer because of their rigid structures to achieve effective π-conjugation.1-2 In this presentation, we demonstrate that resonant tunneling through molecular orbitals for SAuSH device, in which COPV5(SH)2 molecular wire (Figure 1) is one-side chemical bonded to electrodes. Due to improved nanogap electrodes of our electroless Au-plated (ELGP) nanogap Pt electrodes with the top radius of a few nm, we report that resonant tunneling is modulated by application of gate voltage. The initial structures of the source, drain, and two side gate electrodes of Ti/Pt were fabricated on a SiO2/Si substrate via electron beam lithography (EBL) and lift-off processes. Electroless Au-plating was carried out to reduce the electrode gaps to ~3 nm (Figure 2), followed by the introduction of a COPV5(SH)2 molecule between the nanogap electrodes by immersing into a solution of COPV5(SH)2. We then measured the current-voltage (I-V) characteristics at 9 K using a mechanical He-refrigerator-type prober station, and differential conductance is numerically calculated in Figure 3. Negative second dI/dV peak have been observed largely shifted by application of gate bias at -8 V (Figure 3, red lines). We suggest that the transport mechanism of this single molecular wire is resonant tunneling phenomena under the alignment of a molecular orbital with Fermi energy of a source or drain electrode.
机译:我们已经报道了碳桥​​接的低聚(亚苯基亚乙烯基)(COPVn)可以用作有效的分子线,如光诱导的电子转移所证明的那样,因为它们具有实现有效π共轭的刚性结构。1-2在本演示中,我们证明了共振隧穿通过SAuSH装置的分子轨道,其中COPV5(SH)2分子线(图1)是化学键合到电极的一侧。由于改进了我们的化学镀金(ELGP)纳米间隙Pt电极的纳米间隙电极,其顶部半径为几纳米,因此我们报告说,通过施加栅极电压可以调制共振隧穿。 Ti / Pt的源极,漏极和两个侧栅电极的初始结构是通过电子束光刻(EBL)和剥离工艺在SiO2 / Si基板上制造的。进行化学镀Au以将电极间隙减小到〜3 nm(图2),然后通过浸入COPV5(SH)2的溶液在纳米间隙电极之间引入COPV5(SH)2分子。然后,我们使用机械He制冷机式探针台在9 K下测量了电流-电压(IV)特性,并在图3中通过数值计算了差分电导。观察到负第二dI / dV峰值由于施加门而发生了很大变化-8 V偏置(图3,红线)。我们认为这种单分子线的传输机制是在分子轨道与源电极或漏电极的费米能对准的情况下的共振隧穿现象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号