首页> 外文会议>Applications of Evolutionary Computing; Lecture Notes in Computer Science; 4448 >Using Kalman-Filtered Radial Basis Function Networks to Forecast Changes in the ISEQ Index
【24h】

Using Kalman-Filtered Radial Basis Function Networks to Forecast Changes in the ISEQ Index

机译:使用卡尔曼滤波的径向基函数网络预测ISEQ指数的变化

获取原文
获取原文并翻译 | 示例

摘要

A Kalman-Filtered Feature-space approach is taken to forecast changes in the ISEQ (Irish Stock Exchange Equity Overall) Index using the previous five days' lagged returns solely as inputs. The resulting model is tantamount to a time-varying (adaptive) technical trading rule, one which achieves an out-of-sample Sharpe ('reward-to-variability') Ratio far superior to the 'buy-and-hold' strategy and its popular 'crossing moving-average' counterparts. The approach is contrasted to Recurrent Neural Network models and with other previous attempts to combine Kalman-Filtering concepts with (more traditional) Multi-layer Perceptron Network models. The new method proposed is found to be simple to implement, and, based on preliminary results presented here, might be expected to perform well for this type of problem.
机译:采用卡尔曼滤波特征空间方法来预测ISEQ(爱尔兰证券交易所股票整体)指数的变化,而仅将前五天的滞后收益作为输入。结果模型等于时变(自适应)技术交易规则,该规则实现的样本外Sharpe(“回报可变性”)比率远优于“买入并持有”策略,并且其流行的“穿越移动平均线”同行。该方法与递归神经网络模型以及将卡尔曼滤波概念与(更传统的)多层感知器网络模型相结合的其他先前尝试形成对比。发现提出的新方法很容易实现,并且基于此处介绍的初步结果,可以预期该方法对于此类问题表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号