首页> 外文会议>Applications of Digital Image Processing XXII >Moving object detection using motion field constraint with observer motion parameter
【24h】

Moving object detection using motion field constraint with observer motion parameter

机译:使用具有观察者运动参数的运动场约束进行运动物体检测

获取原文
获取原文并翻译 | 示例

摘要

Abstract: In this paper we propose a method for detecting moving objects in image sequence observed from a moving platform using optical flow. This problem is difficult because moving observer (i.e. camera) causes apparent motion in the image even for stationary environment. The method can be applied to many situations, such as a robot vision and an obstacle detection for an autonomous vehicle system. We assume that observer motion parameter (translation and rotation) is known and image system is modeled by perspective projection. For the problem, some methods have been proposed, in which the complex logarithm mapping, the estimation of Focus of Expansion and the depth of objects are used. For a given motion parameter of camera, we can formulate motion field constraint (MFC) in the image plane which is satisfied by the relative movement of stationary environment against camera motion. On the other hand, the motion vector in the image plane, which is called motion field, is estimated by the well-known optical flow constraint (OFC). Our main idea is to use the difference between two estimation results. One is the solution of minimizing least squared OFC subjected with MFC, and the other is the solution of that without MFC. For the stationary environment region, the difference between two is small and the difference tends to be large at the moving region. Therefore, the suitable criterion for these values will separate two regions precisely. In our study, two criteria are proposed and are investigated. One criterion uses squared residual of OFC with and without MFC. Another criterion uses directional error between two solutions. The validity of our method is shown through some examples, and the obtained results show the latter criterion gives more accurate estimation than the former one. !5
机译:摘要:在本文中,我们提出了一种使用光流检测从移动平台观察到的图像序列中的移动物体的方法。由于移动的观察者(即照相机)即使在静止的环境下也会在图像中产生明显的运动,因此这个问题很困难。该方法可以应用于许多情况,例如机器人视觉和用于自动车辆系统的障碍物检测。我们假设观察者的运动参数(平移和旋转)是已知的,并且图像系统是通过透视投影建模的。针对该问题,提出了一些方法,其中使用了复数对数映射,扩展焦点估计和对象深度的方法。对于给定的摄像机运动参数,我们可以在图像平面中制定运动场约束(MFC),该运动场约束由静止环境相对于摄像机运动的相对运动来满足。另一方面,通过众所周知的光流约束(OFC)估计像平面中的运动矢量,即运动场。我们的主要思想是利用两个估计结果之间的差异。一种是最小化使用MFC的最小二乘OFC的解决方案,另一种是不使用MFC的解决方案。对于静止的环境区域,两者之间的差异很小,并且在移动区域的差异往往很大。因此,这些值的合适标准将精确地分隔两个区域。在我们的研究中,提出并研究了两个标准。一个标准使用有无MFC的OFC的平方残差。另一个标准使用两个解决方案之间的方向误差。通过实例说明了该方法的有效性,所得结果表明,后一种准则的估计比前一种准则更准确。 !5

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号