首页> 外文会议>Applications of Artificial Intelligence X: Machine Vision and Robotics >Automatic building and supervised discrimination learning of a
【24h】

Automatic building and supervised discrimination learning of a

机译:自动构建和监督歧视学习

获取原文

摘要

Abstract: Mechanisms for automatically building and refining appearance models (AMs) of 3-D objects are presented. AMs encode allowed ranges of values of target characteristics called attributes. Allowed values for each attribute of arbitrarily defined parts of a modeled object are determined by statistical analysis of an example set of known targets. Once models are built, the system learns which attributes are discriminating (important to making a correct identification) from mistakes made on a set of training data. In discrimination learning, a weight associated with an attribute is increased or decreased whenever a test for an attribute denies or supports an incorrect object identification, respectively. A consistently decreasing weight eventually results in the essential elimination of the associated attribute from the AM. We illustrate and evaluate this approach in the context of our work in automatic target recognition (ATR). !6
机译:摘要:提出了自动构建和完善3D对象外观模型(AM)的机制。 AM对称为特性的目标特征的允许值范围进行编码。通过对一组已知目标示例进行统计分析,确定建模对象的任意定义部分的每个属性的允许值。一旦建立了模型,系统就会了解哪些属性与一组训练数据上的错误相区别(对于进行正确的标识很重要)。在区分学习中,每当对属性的测试拒绝或支持不正确的对象标识时,与属性相关的权重就会增加或减少。持续减少的体重最终导致从AM中基本消除了相关属性。我们在自动目标识别(ATR)的工作环境中说明和评估这种方法。 !6

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号