首页> 外文会议>Anomaly detection and imaging with X-rays >Optimizing Convergence Rates of Alternating Minimization Reconstruction Algorithms for Real-Time Explosive Detection Applications
【24h】

Optimizing Convergence Rates of Alternating Minimization Reconstruction Algorithms for Real-Time Explosive Detection Applications

机译:实时爆炸检测应用中交替最小化重构算法的收敛速率优化

获取原文
获取原文并翻译 | 示例

摘要

X-ray computed tomography reconstruction for medical, security and industrial applications has evolved through 40 years of experience with rotating gantry scanners using analytic reconstruction techniques such as filtered back projection (FBP). In parallel, research into statistical iterative reconstruction algorithms has evolved to apply to sparse view scanners in nuclear medicine, low data rate scanners in Positron Emission Tomography (PET) and more recently to reduce exposure to ionizing radiation in conventional X-ray CT scanners. Multiple approaches to statistical iterative reconstruction have been developed based primarily on variations of expectation maximization (EM) algorithms. The primary benefit of EM algorithms is the guarantee of convergence that is maintained when iterative corrections are made within the limits of convergent algorithms. The primary disadvantage, however is that strict adherence to correction limits of convergent algorithms extends the number of iterations and ultimate timeline to complete a 3D volumetric reconstruction. Researchers have studied methods to accelerate convergence through more aggressive corrections, ordered subsets and spatially variant image updates. In this paper we describe the development of an AM reconstruction algorithm with accelerated convergence for use in a real-time explosive detection application for aviation security. By judiciously applying multiple acceleration techniques and advanced GPU processing architectures, we are able to perform 3D reconstruction of scanned passenger baggage at a rate of 75 slices per second. Analysis of the results on stream of commerce passenger bags demonstrates accelerated convergence by factors of 8 to 15, when comparing images from accelerated and strictly convergent algorithms.
机译:在医疗,安全和工业应用的X射线计算机断层摄影术重建方面,经过40年来使用旋转重建龙门扫描仪(使用过滤反投影(FBP))等解析重建技术的经验不断发展。同时,对统计迭代重建算法的研究已经发展到可以应用于核医学中的稀疏视图扫描仪,正电子发射断层扫描(PET)中的低数据速率扫描仪,并且最近可以减少传统X射线CT扫描仪中暴露于电离辐射的辐射。主要基于期望最大化(EM)算法的变化,已经开发了多种统计迭代重建方法。 EM算法的主要好处是在收敛算法的限制范围内进行迭代校正时可以保证收敛。但是,主要缺点是严格遵守收敛算法的校正限制会延长迭代次数和最终时间线,从而完成3D体积重建。研究人员研究了通过更积极的校正,有序的子集和空间变化的图像更新来加速收敛的方法。在本文中,我们描述了一种具有加速收敛性的AM重建算法的开发,该算法可用于航空安全的实时爆炸物检测应用。通过明智地应用多种加速技术和先进的GPU处理体系结构,我们能够以每秒75片的速度执行扫描旅客行李的3D重建。对商务旅客行李流结果的分析表明,当比较来自加速算法和严格收敛算法的图像时,加速收敛系数为8到15。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号