首页> 外文会议>Annual symposium on computational geometry >Sharp Bounds on Davenport-Schinzel Sequences of Every Order
【24h】

Sharp Bounds on Davenport-Schinzel Sequences of Every Order

机译:每个阶的Davenport-Schinzel序列的界线

获取原文

摘要

One of the oldest unresolved problems in extremal combinatorics is to determine the maximum length of Davenport-Schinzel sequences, where an orders DS sequence is defined to be one over an n-letter alphabet that avoids alternating subsequences of the form a…b… a…b…with length s + 2. These sequences were introduced by Davenport and Schinzel in 1965 to model a certain problem in differential equations and have since become an indispensable tool in computational geometry and the analysis of discrete geometric structures. Let λ_s(n) be the extremal function for such sequences. What is λ_s asymptotically? This question has been answered satisfactorily (by Hart and Sharir, Agarwal, Sharir, and Shor, and Nivasch) when s is even or s ≤ 3. However, since the work of Agarwal, Sharir, and Shor in the 1980s there has been a persistent gap in our understanding of the odd orders, a gap that is just as much qualitative as quantitative. In this paper we establish the following bounds on λ_s(n) for every order s. λ_s(n) ={n s=1 2n-1 s=2 2nα(n)+O(n) s=3 direct-(n2~(α(n))) s=4 direct(nα(n)2~(α(n))) s=5 n2(1+o(1))α~t(n)/t! s≥6 t=[(s-2)/2] These results refute a conjecture of Alon, Kaplan, Nivasch, Sharir, and Smorodinsky and run counter to common sense. When λ_s is odd, λ_s behaves essentially like λ_(s-1).
机译:极值组合法中最古老的未解决问题之一是确定Davenport-Schinzel序列的最大长度,其中将DS序列定义为n个字母上的一个,避免了a ... b ... a ...形式的交替子序列b…长度为s +2。这些序列由Davenport和Schinzel于1965年引入,以建模微分方程中的某个问题,自此成为计算几何学和离散几何结构分析中必不可少的工具。令λ_s(n)为此类序列的极值函数。 λ_s渐近是什么?当s等于或≤3时,已经很好地回答了这个问题(Hart和Sharir,Agarwal,Sharir和Shor和Nivasch)。但是,自1980年代Agarwal,Sharir和Shor的工作以来,在我们对奇数阶的理解中存在持续的鸿沟,这种鸿沟在质量上与定量上一样多。在本文中,我们针对每个阶数s在λ_s(n)上建立以下界限。 λ_s(n)= {ns = 1 2n-1 s = 22nα(n)+ O(n)s = 3直接-(n2〜(α(n)))s = 4直接(nα(n)2〜 (α(n)))s = 5 n2(1 + o(1))α〜t(n)/ t! s≥6t = [(s-2)/ 2]这些结果驳斥了Alon,Kaplan,Nivasch,Sharir和Smorodinsky的猜想,并且与常识背道而驰。当λ_s为奇数时,λ_s的行为本质上类似于λ_(s-1)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号