首页> 外文会议>Amity International Conference on Artificial Intelligence >Sound Source Separation Using Spatio-temporal Sound Pressure Distribution Images and Machine Learning
【24h】

Sound Source Separation Using Spatio-temporal Sound Pressure Distribution Images and Machine Learning

机译:使用时空声压分布图像和机器学习进行声源分离

获取原文

摘要

Sound source separation (SSS) using a microphone array is effective in various situations, such as in the recording of target speech in noisy environments. We previously proposed an SSS system using a differential-type array and time-delay neural network (NN). An advantage of the differential-type array was that distortion of the target speech due to the nonlinear property of the NN was prevented. However, the system was only effective for a narrowband signal. For broadband signals (such as speech), a new SSS system is proposed, which extends the previous one in the following two areas. First, the input to the NN is extended to sound pressure distribution images, which are formed based on the microphone outputs. Second, the number of layers in the NN is increased. Computer simulations revealed that the proposed system exhibited higher SSS performance than conventional arrays, including our previous one.
机译:使用麦克风阵列的声源分离(SSS)在各种情况下都很有效,例如在嘈杂环境中录制目标语音时。我们先前提出了一种使用差分类型数组和时延神经网络(NN)的SSS系统。差分类型阵列的一个优点是可以防止由于NN的非线性特性而导致目标语音失真。但是,该系统仅对窄带信号有效。对于宽带信号(例如语音),提出了一种新的SSS系统,该系统在以下两个区域中扩展了前一个系统。首先,到NN的输入扩展到基于麦克风输出形成的声压分布图像。第二,NN中的层数增加。计算机仿真表明,所提出的系统具有比常规阵列(包括我们先前的阵列)更高的SSS性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号