【24h】

LARGE EDDY SIMULATION OF FULLY DEVELOPED TURBULENT PIPE FLOW

机译:充分发展的湍流管流动的大涡模拟

获取原文
获取原文并翻译 | 示例

摘要

Fully developed turbulent pipe flow is investigated by large eddy simulations (LES). The three-dimensional, unsteady, incompressible, filtered continuity and Navier-Stokes equations in cylindrical coordinates are discretized by a finite difference method. The spatial derivatives are approximated by second order conservative schemes. This scheme eliminates the numerical generation or dissipation of energy. The pressure Poisson equation is solved by FFT method and time is advanced through a third order Runge-Kutta method. The commonly used subgrid scale (SGS) models - the Smagorinsky model and the dynamic model are implemented and simulations are performed for fully developed turbulent pipe flow at two different Reynolds numbers. The flow features in terms of mean velocity as well as higher order turbulence intensities and correlations are presented and compared to experimental and DNS data available in literature. Extensive comparisons are made for cases using different grid resolution, different streamwise domain dimension, different sub-grid scale model, and, at two different Reynolds number. For two Reynolds numbers (5,000 and 30,000) tested in this study, the fine mesh (64 x 96 x 64, circumferential x radial x longitudinal) produces better results than the coarse mesh (32 x 48 x 32), indicating the significance of the grid resolution, especially near the pipe surface. On the fine mesh for the two Reynolds numbers, the results exhibit a slight Reynolds number effect, indicating the mesh needs to be further refined at higher Reynolds number. Simulations were performed for two domain sizes, namely 6D and 12D, where D is the pipe diameter. When the streamwise grid resolution remains unchanged, the two simulations show negligible difference. This ensures that a 6D domain is adequate to include the largest eddies in a fully developed turbulent pipe flow at the current Reynolds number. When the fine mesh is used, the subgrid scale models (Smagorinsky and Dynamic) provide limited contribution to the total turbulent kinetic energy. Although the current results agree quite well with other published LES simulations, when compared with the Law of the wall, benchmark experiments and DNS results, the simulated mean velocity in the log region is higher than the experimental and DNS data. Overall, it was observed that the numerical methods work satisfactorily well for turbulent pipe flows at low and high Reynolds numbers, and, the method has capability to be used in the simulation of flows with practical interest.
机译:通过大涡模拟(LES)研究了充分发展的湍流管道流动。通过有限差分法离散圆柱坐标中的三维非定常不可压缩滤波连续性方程和Navier-Stokes方程。通过二阶保守方案近似空间导数。该方案消除了数值上的能量产生或耗散。通过FFT方法求解压力泊松方程,并通过三阶Runge-Kutta方法提前时间。实施了常用的亚网格比例尺(SGS)模型-Smagorinsky模型和动态模型,并对两个不同雷诺数下充分展开的湍流管流进行了仿真。提出了以平均速度,高阶湍流强度和相关性表示的流动特征,并将其与文献中的实验数据和DNS数据进行了比较。对于使用不同网格分辨率,不同流域尺寸,不同子网格比例模型以及两个不同雷诺数的情况进行了广泛的比较。对于本研究中测试的两个雷诺数(5,000和30,000),细网格(64 x 96 x 64,周向x径向x纵向)产生的结果要好于粗网格(32 x 48 x 32),表明网格分辨率,尤其是在管道表面附近。在两个雷诺数的细网格上,结果显示出轻微的雷诺数效应,表明需要在更高的雷诺数下进一步细化网格。针对两个域大小(即6D和12D)执行了仿真,其中D是管道直径。当沿流方向的网格分辨率保持不变时,两个模拟显示的差异可忽略不计。这样可确保6D域足以在当前雷诺数下充分发展出湍流的最大涡流中。使用细网格时,子网格比例模型(Smagorinsky和Dynamic)对总湍动能的贡献有限。尽管当前结果与其他已发布的LES模拟非常吻合,但与墙定律,基准实验和DNS结果相比,对数区域的模拟平均速度高于实验和DNS数据。总体而言,观察到数值方法对于低雷诺数和高雷诺数的湍流管流动均能令人满意地工作,并且该方法具有在实际应用中模拟流动的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号