首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XII pt.2 >Neural Network Retrieval of Atmospheric Temperature and Moisture Profiles from AIRS/AMSU Data in the Presence of Clouds
【24h】

Neural Network Retrieval of Atmospheric Temperature and Moisture Profiles from AIRS/AMSU Data in the Presence of Clouds

机译:有云时从AIRS / AMSU数据中提取大气温度和湿度剖面的神经网络

获取原文
获取原文并翻译 | 示例

摘要

A nonlinear stochastic method for the retrieval of atmospheric temperature and moisture profiles has been developed and evaluated with sounding data from the Atmospheric InfraRed Sounder (AIRS) and the Advanced Microwave Sounding Unit (AMSU), and is presently being adapted for use with the NPOESS Cross-track Infrared Microwave Sounding Suite (CrIMSS) consisting of the hyperspectral Cross-track Infrared Sounder (CrIS) and the Advanced Technology Microwave Sounder (ATMS). The algorithm is implemented in three stages, motivating the name, SCENE (Stochastic Cloud clearing, followed by Eigenvector radiance compression and denoising, followed by Neural network Estimation). First, the infrared radiance perturbations due to clouds are estimated and corrected by combined processing of the infrared and microwave data. Second, a Projected Principal Components (PPC) transform is used to reduce the dimensionality of and optimally extract geophysical profile information from the cloud-cleared infrared radiance data. Third, an artificial feedforward neural network is used to estimate the desired geophysical parameters from the projected principal components. This paper has two major components. First, details of the SCENE algorithm are discussed, including both the architectural implementation and parameter selection and optimization. Second, the performance of the SCENE algorithm is compared with that of the AIRS Level 2 algorithm (version 4.0.9) currently being used for the Aqua mission. The stochastic cloud-clearing algorithm estimates infrared radiances that would be observed in the absence of clouds. This algorithm examines 3x3 sets of nine AIRS fields of view, selects the clearest ones, and then in a series of simple linear and non-linear operations on both the infrared and microwave channels estimates a single cloud-cleared infrared spectrum for the 3x3 set. The algorithm is both trained and tested using global numerical weather analyses within 60 degrees of the equator. The analyses were generated by the European Center for Medium-range Weather Forecasting (ECMWF), and were converted to radiances using the SARTA v1.04 radiative transfer package. The PPC compression technique was used to reduce the infrared radiance dimensionality by a factor of 100, while retaining over 99.99% of the radiance variance that is correlated to the geophysical profiles. A feedforward neural network (NN) with a single hidden layer of approximately 3000 degrees of freedom was then used to estimate the atmospheric moisture and temperature profiles at approximately 60 levels from the surface to 20 km.
机译:已经开发了一种非线性随机方法,用于检索大气温度和湿度曲线,并使用了来自大气红外测深仪(AIRS)和高级微波测深仪(AMSU)的测深数据进行了评估,目前已适用于NPOESS Cross轨道红外微波探测套件(CrIMSS),由高光谱交叉轨道红外探测仪(CrIS)和先进技术微波探测仪(ATMS)组成。该算法的实施分为三个阶段,即激发名称SCENE(随机云清除,然后进行特征向量辐射压缩和去噪,然后进行神经网络估计)。首先,通过对红外和微波数据的组合处理来估计和校正由于云造成的红外辐射扰动。其次,使用投影主成分(PPC)变换来降低云的大小,并从清除云的红外辐射数据中最佳提取地球物理剖面信息。第三,使用人工前馈神经网络从预计的主要成分估算所需的地球物理参数。本文有两个主要组成部分。首先,讨论了SCENE算法的细节,包括体系结构实现以及参数选择和优化。其次,将SCENE算法的性能与当前用于Aqua任务的AIRS Level 2算法(版本4.0.9)进行比较。随机清除云算法估计在没有云的情况下会观察到的红外辐射。该算法检查9个AIRS视场的3x3集,选择最清晰的视野,然后在红外和微波通道上进行一系列简单的线性和非线性操作,为3x3集估计单个云清除的红外光谱。使用赤道60度以内的全球数值天气分析对算法进行了训练和测试。分析是由欧洲中型天气预报中心(ECMWF)生成的,并使用SARTA v1.04辐射传递软件包将其转换为辐射度。 PPC压缩技术用于将红外辐射维数减少100倍,同时保留了与地球物理轮廓相关的99.99%以上的辐射变化。然后使用具有约3000个自由度的单个隐藏层的前馈神经网络(NN)来估计从表面到20 km处约60个水平的大气湿度和温度分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号