首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI pt.1 >A comparison of noise reduction methods for image enhancement in classification of Hyperspectral imagery
【24h】

A comparison of noise reduction methods for image enhancement in classification of Hyperspectral imagery

机译:高光谱图像分类中用于图像增强的降噪方法比较

获取原文
获取原文并翻译 | 示例

摘要

A particular challenge in hyperspectral remote sensing of benthic habitats is that the signal exiting from the water is a small component of the overall signal received at the satellite or airborne sensor. Therefore, in order to be able to discriminate different ecological areas in benthic habitats, it is important to have a high signal to noise ratio (SNR). The SNR can be improved by building better sensors; SNR improvements however, we believe, are also achievable by means of signal processing and by taking advantage of the unique characteristics of hyperspectral sensors. One approach for SNR improvement is based on signal oversampling. Another approach for SNR improvement is Reduced Rank Filtering (RRF) where the small Singular Values of the image are discarded and then reconstruct a lower rank approximation to the original image. This paper presents a comparison in the use of oversampling filtering (OF) versus RRF as SNR enhancement methods in terms of classification accuracy and class separability when used as a preprocessing step in a classification system. Overall results show that OF does a better job improving the classification accuracy than RRF and at much lower computational cost, making it an attractive technique for Hyperspectral Image Processing
机译:对底栖生境的高光谱遥感的一个特殊挑战是,从水中流出的信号只是卫星或机载传感器接收到的总信号的一小部分。因此,为了能够区分底栖生境中的不同生态区域,重要的是要具有高信噪比(SNR)。通过构建更好的传感器可以改善SNR。但是,我们认为,也可以通过信号处理和利用高光谱传感器的独特特性来实现SNR的改善。 SNR改善的一种方法是基于信号过采样。改善SNR的另一种方法是降低秩滤波(RRF),其中丢弃图像的小奇异值,然后重建原始图像的较低秩近似。本文就在分类系统中用作预处理步骤时,在分类准确性和分类可分离性方面,对使用过采样滤波(OF)与RRF作为SNR增强方法进行了比较。总体结果表明,与RRF相比,OF可以更好地提高分类精度,并且计算成本低得多,这使其成为高光谱图像处理的一种有吸引力的技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号