首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI pt.1 >Spectral Quality Equation Relating Collection Parameters to Material Identification Performance
【24h】

Spectral Quality Equation Relating Collection Parameters to Material Identification Performance

机译:将收集参数与材料识别性能相关的光谱质量方程

获取原文
获取原文并翻译 | 示例

摘要

A methodology capable of quantitatively assessing the quality of hyperspectral data has become increasingly desirable as hyperspectral remote sensing technology migrates into operational systems. The quality of spectral data depends on many factors including collection parameters charactering the sensor and the scene, and the desired spectral products. Therefore, there is a recognized urgent need to understand the phenomenology associated with the collection parameters and how they relate to the quality of the information extracted from the spectral data for different applications. If such relationships can be established, data collection requirements and tasking strategies can then be formulated for these applications. A spectral quality equation with an excellent least-squares fit was established for object/anomaly detection in an earlier work. This paper describes a spectral quality equation established for material identification. This spectral quality equation relates the collection parameters (i.e. spatial resolution, spectral resolution, signal-to-noise ratio, and scene complexity) to the probability of correct identification (Pi) of materials at a given probability of false alarms (Pfa).
机译:随着高光谱遥感技术向操作系统的迁移,一种能够定量评估高光谱数据质量的方法变得越来越受欢迎。光谱数据的质量取决于许多因素,包括表征传感器和场景的采集参数以及所需的光谱产物。因此,迫切需要了解与收集参数相关的现象学,以及它们与从光谱数据中提取的信息质量之间的关系,以用于不同的应用。如果可以建立这种关系,则可以为这些应用程序制定数据收集要求和任务策略。在较早的工作中,建立了具有极佳最小二乘拟合的光谱质量方程,以用于物体/异常检测。本文描述了建立用于材料识别的光谱质量方程。该光谱质量方程将收集参数(即空间分辨率,光谱分辨率,信噪比和场景复杂性)与在给定的虚警概率(Pfa)下材料正确识别(Pi)的概率相关联。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号