首页> 外文会议>Algorithms and technologies for multispectral. hyperspectral. and ultraspectral imagery XVI >Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed
【24h】

Semi-supervised hyperspectral image segmentation using regionalized stochastic watershed

机译:使用区域随机分水岭的半监督高光谱图像分割

获取原文
获取原文并翻译 | 示例

摘要

Stochastic watershed is a robust method to estimate the probability density function (pdf) of contours of a multi-variate image using MonteCarlo simulations of watersheds from random markers. The aim of this paper is to propose a stochastic watershed-based algorithm for segmenting hyperspectral images using a semi-supervised approach. Starting from a training dataset consisting in a selection of representative pixel vectors of each spectral class of the image, the algorithm calculate for each class a membership probability map (MPM). Then, the MPM of class k is considered as a regionalized density function which is used to simulate the random markers for the MonteCarlo estimation of the pdf of contours of the corresponding class k. This pdf favours the spatial regions of the image spectrally close to the class k. After applying the same technique to each class, a series of pdf are obtained for a single image. Finally, the pdf's can be segmented hierarchically either separately for each class or after combination, as a single pdf function. In the results, besides the generic spatial-spectral segmentation of hyperspectral images, the interest of the approach is also illustrated for target segmentation.
机译:随机分水岭是一种鲁棒的方法,可使用来自随机标记的分水岭的蒙特卡洛模拟来估算多元图像轮廓的概率密度函数(pdf)。本文的目的是提出一种基于随机分水岭的半监督分割高光谱图像的算法。从训练数据集开始,该训练数据集包括对图像的每个光谱类别的代表性像素矢量的选择,该算法为每个类别计算隶属概率图(MPM)。然后,将类别k的MPM视为一个区域密度函数,该函数用于模拟随机标记,以对相应类别k的pdf进行蒙特卡洛估计。该pdf支持光谱在光谱上接近k类的空间区域。将相同的技术应用于每个类别后,对于单个图像可获得一系列pdf。最后,可以将pdf分为每个类分别进行分层或组合后作为一个pdf函数进行分层。结果表明,除了高光谱图像的一般空间光谱分割以外,还说明了该方法对目标分割的兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号