首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII >Method of Sensitivity Analysis in Anomaly Detection Algorithms for Hyperspectral Images
【24h】

Method of Sensitivity Analysis in Anomaly Detection Algorithms for Hyperspectral Images

机译:高光谱图像异常检测算法中的灵敏度分析方法

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection within hyperspectral images often relies on the critical step of thresholding to declare the specific pixels based on their anomaly scores. When the detector is built upon sound statistical assumptions, this threshold is often probabilistically based, such as the RX detector and the chi-squared threshold. However, when either the detector lacking statistical framework or the background pixels of the image violate the required assumptions, the approach to thresholding is complicated and can resolve into performance instability. We present a method to test the sensitivity thresholding to small changes in the characteristics of the anomalies based on their Mahalanobis distance to the background class. In doing so, we highlight issues in detectors thresholding techniques comparing statistical approaches against heuristic methods of thresholding.
机译:高光谱图像中的异常检测通常依赖于阈值的关键步骤,以基于特定像素的异常评分来声明特定像素。当检测器基于声音统计假设建立时,该阈值通常是基于概率的,例如RX检测器和卡方阈值。但是,当缺少统计框架的检测器或图像的背景像素违反要求的假设时,阈值化方法很复杂,并且可能会导致性能不稳定。我们提出了一种方法,可根据距背景类的马氏距离,对异常特征的细微变化进行敏感性阈值测试。在此过程中,我们重点介绍了将统计方法与启发式阈值方法进行比较的检测器阈值技术中的问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号