首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI >Chemical Agent Resistant Coating (CARC) Detection Using Hyper-Spectral Imager (HSI) and a Newly Developed Feature Transformation (FT) Detection Method
【24h】

Chemical Agent Resistant Coating (CARC) Detection Using Hyper-Spectral Imager (HSI) and a Newly Developed Feature Transformation (FT) Detection Method

机译:使用高光谱成像仪(HSI)的抗化学剂涂层(CARC)检测和新开发的特征转换(FT)检测方法

获取原文
获取原文并翻译 | 示例

摘要

Chemical Agent Resistant Coating (CARC) is the term for the paint commonly applied to military vehicles which provides protection against chemical and biological weapons. In this paper, we present results for detecting CARC with two different colors (Green and Beige). A High-Fidelity Target Insertion Method has been developed. This method allows one to insert the target radiance into any HSI sensor scene, while still to preserve the sensor spatio-spectral noise at all the pixel positions. We show that the reduced (400-l,000nm) spectral range is good enough for Beige CARC, and Green CARC Type Ⅰ and Ⅱ detection using several current state-of-the-art HSI target detection methods. Furthermore, we will present a newly developed Feature Transformation (FT) algorithm. In essence, the FT method, by transforming the original features to a different feature domain (e.g., the Fourier, wavelet packets, and local cosine domains), may considerably increase the statistic separation between the target and background probability density functions, and thus may significantly improve the target detection and identification performance, as evidenced by the test results in this paper. We show that by differentiating the original spectral features (this operation can be considered as the 1st level Haar wavelet high-pass filtering), we can completely separate Beige CARC from the background using a single band at 650nm, and completely separate Green CARC from the background using a single band at 1180nm, leading to perfect detection results. We have developed an automated best spectral band selection process that can rank the available spectral bands from the best to the worst for target detection. Finally, we have also developed an automated cross-spectrum fusion process to further improve the detection performance in lower spectral range (<1,000nm) by selecting the best spectral band pair.
机译:防化学涂料(CARC)是通常用于军用车辆的油漆的术语,可提供针对化学和生物武器的防护。在本文中,我们介绍了使用两种不同颜色(绿色和米色)检测CARC的结果。已经开发了一种高保真目标插入方法。这种方法允许将目标辐射插入任何HSI传感器场景中,同时仍保留所有像素位置的传感器时空光谱噪声。我们显示,缩小的(400-l,000nm)光谱范围对于米色CARC和使用几种当前最新HSI目标检测方法的Green CARCⅠ型和Ⅱ型检测足够好。此外,我们将介绍一种新开发的特征变换(FT)算法。从本质上讲,傅立叶变换方法通过将原始特征变换到不同的特征域(例如,傅立叶,小波包和局部余弦域),可以显着增加目标概率密度函数和背景概率密度函数之间的统计距离,因此正如本文的测试结果所证明的那样,它可以显着提高目标的检测和识别性能。我们表明,通过区分原始光谱特征(此操作可以视为第一级Haar小波高通滤波),我们可以使用650nm处的单个频带将背景中的Beige CARC完全分离,并将Green CARC与背景中的绿色CARC完全分离。使用1180nm的单个波段作为背景,从而获得完美的检测结果。我们已经开发了一种自动的最佳光谱带选择过程,可以对目标检测的最佳光谱范围从最坏到最坏进行排序。最后,我们还开发了一种自动交叉光谱融合方法,以通过选择最佳光谱带对来进一步提高在较低光谱范围(<1,000nm)中的检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号