首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXI >Detecting Plumes in LWIR Using Robust Nonnegative Matrix Factorization with Graph-based Initialization
【24h】

Detecting Plumes in LWIR Using Robust Nonnegative Matrix Factorization with Graph-based Initialization

机译:使用基于图的初始化的鲁棒非负矩阵分解在LWIR中检测羽状物

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of identifying chemical plumes in hyperspectral imaging data, which is challenging due to the diffusivity of plumes and the presence of excessive noise. We propose a robust nonnegative matrix factorization (RNMF) method to segment hyperspectral images considering the low-rank structure of the noise-free data and sparsity of the noise. Because the optimization objective is highly non-convex, nonnegative matrix factorization is very sensitive to initialization. We address the issue by using the fast Nystrom method and label propagation algorithm (LPA). Using the alternating direction method of multipliers (ADMM), RNMF provides high quality clustering results effectively. Experimental results on real single frame and multiframe hyperspectral data with chemical plumes show that the proposed approach is promising in terms of clustering quality and detection accuracy.
机译:我们考虑在高光谱成像数据中识别化学羽流的问题,由于羽流的扩散性和过度噪声的存在,这是一个挑战。考虑到无噪声数据的低秩结构和噪声稀疏性,我们提出了一种鲁棒的非负矩阵分解(RNMF)方法来分割高光谱图像。因为优化目标是高度非凸的,所以非负矩阵分解对初始化非常敏感。我们通过使用快速Nystrom方法和标签传播算法(LPA)解决了这个问题。 RNMF使用乘法器的交替方向方法(ADMM),可有效提供高质量的聚类结果。对具有化学羽流的真实单帧和多帧高光谱数据的实验结果表明,该方法在聚类质量和检测精度方面很有希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号