首页> 外文会议>Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XV >Comparison of spectral matching techniques for vegetation species delineation of the National Arboretum
【24h】

Comparison of spectral matching techniques for vegetation species delineation of the National Arboretum

机译:国家植物园植被物种划分的光谱匹配技术比较

获取原文
获取原文并翻译 | 示例

摘要

Identification of differing vegetation species has been a lauded ability of hyperspectral imagery and analysis but continues to be a challenging problem. Hyperspectral imagery has been used for years in applications such as vegetation analysis and delineation, terrain categorization, explosive mine detection, environmental impacts and effects, and agriculture and crop evaluation. Unlike applications which focus on detection of specific targets with constant spectral signatures, vegetation signatures continually vary across their growth cycle. In order to identify various vegetation species, either large collections of time-varying reference signatures are required, or ground truth/training data is needed. These are not always viable options and in many cases only in-scene data can be used. In this study we compare the performance of various spectral matching methods in separating vegetation at the species level. Parametric, non-parametric, derivative techniques, and other methods are compared. These methods are applied to a complex scene, the National Arboretum in Washington DC, which was imaged by an airborne hyperspectral sensor in August, 2008. This survey assesses performance of spectral matching methods for vegetation species delineation and makes recommendations for its application in hyperspectral data analysis.
机译:识别不同的植被种类一直是高光谱图像和分析的备受赞誉的能力,但仍然是一个具有挑战性的问题。高光谱图像已经在诸如植被分析和描绘,地形分类,爆炸性地雷探测,环境影响和影响以及农业和农作物评估等应用中使用了多年。与专注于检测具有恒定光谱特征的特定目标的应用不同,植被特征在其整个生长周期中不断变化。为了识别各种植被种类,要么需要大量随时间变化的参考签名,要么需要地面真实/训练数据。这些并非总是可行的选择,并且在许多情况下只能使用现场数据。在这项研究中,我们比较了各种光谱匹配方法在物种层面分离植被的性能。比较了参数化,非参数化,派生技术和其他方法。这些方法适用于复杂的场景,即华盛顿特区的国家植物园,由机载高光谱传感器于2008年8月对其进行了成像。该调查评估了光谱匹配方法在植被物种描绘中的性能,并为其在高光谱数据中的应用提出了建议分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号