首页> 外文会议>Algorithms for Synthetic Aperture Radar Imagery XXIV >Extraction of advanced geospatial intelligence (AGI) from commercial synthetic aperture radar imagery
【24h】

Extraction of advanced geospatial intelligence (AGI) from commercial synthetic aperture radar imagery

机译:从商业合成孔径雷达图像中提取高级地理空间情报(AGI)

获取原文
获取原文并翻译 | 示例

摘要

The extraction of objects from advanced geospatial intelligence (AGI) products based on synthetic aperture radar (SAR) imagery is complicated by a number of factors. For example, accurate detection of temporal changes represented in two-color multiview (2CMV) AGI products can be challenging because of speckle noise susceptibility and false positives that result from small orientation differences between objects imaged at different times. These cases of apparent motion can result in 2CMV detection, but they obviously differ greatly in terms of significance. In investigating the state-of-the-art in SAR image processing, we have found that differentiating between these two general cases is a problem that has not been well addressed. We propose a framework of methods to address these problems. For the detection of the temporal changes while reducing the number of false positives, we propose using adaptive object intensity and area thresholding in conjunction with relaxed brightness optical flow algorithms that track the motion of objects across time in small regions of interest. The proposed framework for distinguishing between actual motion and misregistration can lead to more accurate and meaningful change detection and improve object extraction from a SAR AGI product. Results demonstrate the ability of our techniques to reduce false positives up to 60%.
机译:基于合成孔径雷达(SAR)图像从高级地理空间智能(AGI)产品中提取对象的过程受许多因素的影响而变得复杂。例如,由于斑点噪声易感性以及由于在不同时间成像的物体之间的微小方向差异而导致的误报,准确检测以双色多视图(2CMV)AGI产品表示的时间变化可能具有挑战性。这些视在运动的情况可以导致2CMV检测,但是在重要性上显然存在很大差异。在研究SAR图像处理的最新技术时,我们发现区分这两种一般情况是一个尚未很好解决的问题。我们提出了解决这些问题的方法框架。为了在检测时间变化的同时减少误报的数量,我们建议使用自适应对象强度和面积阈值,结合松弛亮度光流算法,该算法在较小的关注区域中跨时间跟踪对象的运动。所提出的用于区分实际运动和套准偏差的框架可以导致更准确和有意义的更改检测,并改善从SAR AGI产品中提取对象的能力。结果表明,我们的技术能够将误报率降低多达60%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号