首页> 外文会议>Algorithms - ESA 2009 >A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication
【24h】

A Fast Output-Sensitive Algorithm for Boolean Matrix Multiplication

机译:布尔矩阵乘法的快速输出敏感算法

获取原文
获取原文并翻译 | 示例

摘要

We use randomness to exploit the potential sparsity of the Boolean matrix product in order to speed up the computation of the product. Our new fast output-sensitive algorithm for Boolean matrix product and its witnesses is randomized and provides the Boolean product and its witnesses almost certainly. Its worst-case time performance is expressed in terms of the input size and the number of non-zero entries of the product matrix. It runs in time O(n~2s~(ω/2-1)), where the input matrices have size n × n, the number of non-zero entries in the product matrix is at most s, ω is the exponent of the fast matrix multiplication and O(f(n)) denotes O(f(n) log~d n) for some constant d. By the currently best bound on uj, its running time can be also expressed as O(n~2s~(0.188)). Our algorithm is substantially faster than the output-sensitive column-row method for Boolean matrix product for s larger than n~(1.232) and it is never slower than the fast O(n~ω)-time algorithm for this problem.rnWe also present a partial derandomization of our algorithm as well as its generalization to include the Boolean product of rectangular Boolean matrices. Finally, we show several applications of our output-sensitive algorithms.
机译:我们使用随机性来利用布尔矩阵乘积的潜在稀疏性,以加快乘积的计算。我们针对布尔矩阵乘积及其见证人的新的快速输出敏感算法是随机的,几乎可以肯定地提供布尔乘积及其见证人。其最坏情况下的时间性能用输入大小和乘积矩阵的非零条目数表示。它在时间O(n〜2s〜(ω/ 2-1))中运行,其中输入矩阵的大小为n×n,乘积矩阵中非零项的数量最多为s,ω是对于某些常数d,快速矩阵乘法和O(f(n))表示O(f(n)log_dn)。根据uj的当前最佳界限,其运行时间也可以表示为O(n〜2s〜(0.188))。对于s大于n〜(1.232)的情况,我们的算法比布尔矩阵乘积的输出敏感列行方法快得多,并且对于此问题,它永远不会比快速O(n〜ω)时间算法慢。提出了我们算法的部分去随机化及其推广,以包括矩形布尔矩阵的布尔乘积。最后,我们展示了输出敏感算法的几种应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号