首页> 外文会议>Algorithms and Computation >An Approximation Algorithm for Dissecting a Rectangle into Rectangles with Specified Areas
【24h】

An Approximation Algorithm for Dissecting a Rectangle into Rectangles with Specified Areas

机译:将矩形分解为指定区域的矩形的近似算法

获取原文
获取原文并翻译 | 示例

摘要

Given a rectangle R with area α and a set of n positive reals A = {a_1,a_2,... ,a_n} with ∑_(a_i∈A) a_i =α we consider the problem of dissecting R into n rectangles r_i with area a_i (i = 1, 2,...,n) so that the set R of resulting rectangles minimizes an objective function such as the sum of perimeters of the rectangles in R, the maximum perimeter of the rectangles in R, and the maximum aspect ratio ρ(r) of the rectangles r ∈ R., where we call the problems with these objective functions PERI-SUM, PERI-MAX and ASPECT-RATIO, respectively. We propose an O(n log n) time algorithm that finds a dissection R of R that is a 1.25-approximation solution to the PERI-SUM, a 2/3~(1/2)-approximation solution to the PERI-MAX, and has an aspect ratio at most max{ρ(R),3,1 + max_i=(1,...,n-1) a_i+1/a_i}, where ρ(R) denotes the aspect ratio of R.
机译:给定一个具有面积α的矩形R和一组n个正实数A = {a_1,a_2,...,a_n},且∑_(a_i∈A)a_i =α,我们考虑将R分解为n个矩形r_i的问题面积a_i(i = 1,2,...,n),从而使所得矩形的集合R最小化目标函数,例如R中矩形的周长之和,R中矩形的最大周长以及矩形r∈R.的最大纵横比ρ(r),我们分别称这些目标函数为PERI-SUM,PERI-MAX和ASPECT-RATIO的问题。我们提出了一种O(n log n)时间算法,该算法找到R的解剖R是PERI-SUM的1.25近似解,PERI-MAX的2/3〜(1/2)近似解,且长宽比最大为max {ρ(R),3,1 + max_i =(1,...,n-1)a_i + 1 / a_i},其中ρ(R)表示R的长宽比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号