首页> 外文会议>Algorithms and architectures for parallel processing >Tuning the Blocksize for Dense Linear Algebra Factorization Routines with the Roofline Model
【24h】

Tuning the Blocksize for Dense Linear Algebra Factorization Routines with the Roofline Model

机译:使用Roofline模型调整密集线性代数分解例程的块大小

获取原文
获取原文并翻译 | 示例

摘要

The optimization of dense linear algebra operations is a fundamental task in the solution of many scientific computing applications. The Roofline Model is a tool that provides an estimation of the performance that a computational kernel can attain on a hardware platform. Therefore, the RM can be used to investigate whether a computational kernel can be further accelerated. We present an approach, based on the RM, to optimize the algorithmic parameters of dense linear algebra kernels. In particular, we perform a basic analysis to identify the optimal values for the kernel parameters. As a proof-of-concept, we apply this technique to optimize a blocked algorithm for matrix inversion via Gauss-Jordan elimination. In addition, we extend this technique to multi-block computational kernels. An experimental evaluation validates the method and shows its convenience. We remark that the results obtained can be extended to other computational kernels similar to Gauss-Jordan elimination such as, e.g., matrix factorizations and the solution of linear least squares problems.
机译:密集线性代数运算的优化是许多科学计算应用程序解决方案中的一项基本任务。 Roofline模型是一种工具,可提供对计算内核在硬件平台上可以达到的性能的估计。因此,RM可用于研究是否可以进一步加速计算内核。我们提出一种基于RM的方法来优化密集线性代数内核的算法参数。特别是,我们执行基本分析以识别内核参数的最佳值。作为概念验证,我们应用了这项技术,以通过高斯-乔丹消除法优化用于矩阵求逆的分块算法。另外,我们将该技术扩展到多块计算内核。实验评估验证了该方法并显示了其便利性。我们注意到获得的结果可以扩展到其他类似于Gauss-Jordan消除的计算核,例如矩阵分解和线性最小二乘问题的解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号