首页> 外文会议>Algorithm theory - SWAT 2010 >The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition
【24h】

The Emergence of Sparse Spanners and Greedy Well-Separated Pair Decomposition

机译:稀疏扳手的出现和贪婪的分离良好的对分解

获取原文
获取原文并翻译 | 示例

摘要

A spanner graph on a set of points in Ed provides shortest paths between any pair of points with lengths at most a constant factor of their Euclidean distance. A spanner with a sparse set of edges is thus a good candidate for network backbones, as in transportation networks and peer-to-peer network overlays. In this paper we investigate new models and aim to interpret why good spanners 'emerge' in reality, when they are clearly built in pieces by agents with their own interests and the construction is not coordinated. Our main result is to show that the following algorithm generates a (1 + e)-spanner with a linear number of edges. In our algorithm, the points build edges at an arbitrary order. A point p will only build an edge pq if there is no existing edge p'q' with p and q' at distances no more than 1/4(1+1/ε) ? pq from p, q respectively. Eventually when all points finish checking edges to all other points, the resulted collection of edges forms a sparse spanner as desired. As a side product, the spanner construction implies a greedy algorithm for constructing linear-size well-separated pair decompositions that may be of interest on its own.
机译:Ed中一组点上的扳手图提供了任意一对点之间的最短路径,其长度最多为其欧几里得距离的常数。因此,在交通网络和点对点网络覆盖中,具有稀疏边缘集的扳手是网络骨干网的理想选择。在本文中,我们研究了新的模型,目的是解释当好扳手由具有自己利益的代理人清楚地将它们拼成碎片,并且构造不协调时,为什么在现实中会“出现”。我们的主要结果是证明以下算法生成具有线性边数的(1 + e)展宽。在我们的算法中,这些点以任意顺序构建边。如果不存在p和q'的边p'q'不超过1/4(1 + 1 /ε)的距离,则点p将仅构建边pq。分别来自p,q的pq。最终,当所有点完成对所有其他点的边缘检查时,所得的边缘集合将根据需要形成稀疏扳手。作为副产品,扳手构造表示一种贪心算法,用于构造线性尺寸的,良好分隔的对分解,该分解本身可能是有意义的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号