首页> 外文会议>AI 2003: Advances in Artificial Intelligence >Finding Optimal Architectures and Weights for ANN: A Combined Hierarchical Approach
【24h】

Finding Optimal Architectures and Weights for ANN: A Combined Hierarchical Approach

机译:为人工神经网络寻找最佳架构和权重:一种组合层次方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a novel approach of implementing a combined hierarchical methodology to find appropriate neural network architecture and weights using an evolutionary least square based algorithm (GALS). This paper focuses on the aspects such as the heuristics of updating weights using an evolutionary least square based algorithm, finding the number of hidden neurons for a two layer feed forward neural network, the stopping criteria for the algorithm and finally comparisons of the results with error back propagation (EBP) algorithm.
机译:在本文中,我们提出了一种新颖的方法,该方法通过使用基于进化最小二乘的算法(GALS)来实现组合分层方法,以找到合适的神经网络体系结构和权重。本文着重于以下方面:使用基于最小二乘的进化算法更新权重的启发式算法,找到两层前馈神经网络的隐藏神经元数量,算法的停止准则以及最终将结果与误差进行比较反向传播(EBP)算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号