首页> 外文会议>AI 2003: Advances in Artificial Intelligence >Towards Automated Creation of Image Interpretation Systems
【24h】

Towards Automated Creation of Image Interpretation Systems

机译:走向图像解释系统的自动创建

获取原文
获取原文并翻译 | 示例

摘要

Automated image interpretation is an important task in numerous applications ranging from security systems to natural resource inventorization based on remote-sensing. Recently, a second generation of adaptive machine-learned image interpretation systems have shown expert-level performance in several challenging domains. While demonstrating an unprecedented improvement over hand-engineered and first generation machine-learned systems in terms of cross-domain portability, design-cycle time, and robustness, such systems are still severely limited. This paper inspects the anatomy of the state-of-the-art Multi resolution Adaptive Object Recognition framework (MR ADORE) and presents extensions that aim at removing the last vestiges of human intervention still present in the original design of ADORE. More specifically, feature selection is still a task performed by human domain experts and represents a major stumbling block in the creation process of fully autonomous image interpretation systems. This paper focuses on minimizing such need for human engineering. After discussing experimental results, showing the performance of the framework extensions in the domain of forestry, the paper concludes by outlining autonomous feature extraction methods that may completely remove the need for human expertise in the feature selection process.
机译:在从安全系统到基于遥感的自然资源清单化等众多应用中,自动图像解释都是一项重要任务。最近,第二代自适应机器学习图像解释系统已经在几个具有挑战性的领域中表现出专家级的性能。尽管在跨域可移植性,设计周期时间和健壮性方面展示了对手工设计和第一代机器学习系统的前所未有的改进,但此类系统仍然受到严重限制。本文检查了最新的多分辨率自适应对象识别框架(MR ADORE)的解剖结构,并提出了旨在消除仍然存在于ADORE原始设计中的人为干预的最后痕迹的扩展。更具体地说,特征选择仍然是人类领域专家执行的任务,并且代表了完全自主的图像解释系统创建过程中的主要绊脚石。本文着重于最大限度地减少对人类工程学的需求。在讨论了实验结果并显示了林业领域框架扩展的性能后,本文总结了自主特征提取方法,这些方法可以完全消除特征选择过程中对人类专业知识的需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号