首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.2; Lecture Notes in Computer Science; 4492 >A Contourlet-Based Method for Wavelet Neural Network Automatic Target Recognition
【24h】

A Contourlet-Based Method for Wavelet Neural Network Automatic Target Recognition

机译:基于轮廓波的小波神经网络自动目标识别方法

获取原文
获取原文并翻译 | 示例

摘要

An object recognition algorithm is put forward based on statistical character of contourlet transform and multi-object wavelet neural network (MWNN). A contourlet-based feature extraction method is proposed, which forms the feature vector taking advantage of the statistical attribution in each sub-band of contourlet transform. And then the extracted features are weighted according to their dispersion degree of data. WNN is used as classifier, which combines the extraction local singularity of wavelet transform and adaptive of artificial neural network. With the application in an aircraft recognition system, the experimental data showed the efficiency of this algorithm for automation target recognition.
机译:提出了一种基于轮廓波变换的统计特性和多目标小波神经网络(MWNN)的目标识别算法。提出了一种基于轮廓波的特征提取方法,该方法利用轮廓波变换各子带中的统计属性来形成特征向量。然后根据提取的特征的数据分散程度对其进行加权。 WNN被用作分类器,其结合了小波变换的提取局部奇异性和人工神经网络的自适应。通过在飞机识别系统中的应用,实验数据证明了该算法对自动目标识别的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号