首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.1; Lecture Notes in Computer Science; 4491 >A Novel Associative Memory System Based Modeling and Prediction of TCP Network Traffic
【24h】

A Novel Associative Memory System Based Modeling and Prediction of TCP Network Traffic

机译:基于新型联想存储系统的TCP网络流量建模与预测

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel high-order associative memory system (AMS) based on the Newton's forward interpolation (NFI), The Interpolation Polynomials and training algorithms for the new AMS scheme are derived. The proposed novel AMS is capable of implementing error-free approximation to complex nonlinear functions of arbitrary order. A method Based on NFI-AMS is designed to model and predict network traffic dynamics, which is capable of modeling the complex nonlinear behavior of a traffic time series and capturing the properties of network traffic. The simulation results showed that the proposed scheme is feasible and efficient. Furthermore, the NFI-AMS based traffic prediction can be used in more fields for network design, management and control.
机译:本文提出了一种基于牛顿正向插值(NFI)的新型高阶联想存储系统(AMS),并推导了该新AMS方案的插值多项​​式和训练算法。所提出的新颖的AMS能够实现对任意阶的复杂非线性函数的无误差逼近。设计了一种基于NFI-AMS的方法来对网络流量动态进行建模和预测,该方法能够对流量时间序列的复杂非线性行为进行建模,并捕获网络流量的属性。仿真结果表明,该方案是可行和有效的。此外,基于NFI-AMS的流量预测可以在更多领域用于网络设计,管理和控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号