首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.1; Lecture Notes in Computer Science; 4491 >A Model Predictive Control of a Grain Dryer with Four Stages Based on Recurrent Fuzzy Neural Network
【24h】

A Model Predictive Control of a Grain Dryer with Four Stages Based on Recurrent Fuzzy Neural Network

机译:基于递归模糊神经网络的四级粮食干燥机模型预测控制

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a model predictive control scheme with recurrent fuzzy neural network (RFNN) by using the temperature of the drying process for grain dryers. In this scheme, there are two RFNNs and two PI controllers. One RFNN with feedforeward and feedback connections of grain layer history position states predicts outlet moisture content (MPRFNN), and the other predicts the discharge rate of the dryer (RPRFNN). One PI controller adjusts the objective of the discharge rate by using MPRFNN, and the other adjusts the given frequency of the discharge motor to control the discharge rate of the grain dryer to reach its objective by using RPRFNN. The experiment is carried out by applying the proposed scheme on the control of a gain dryer with four stages to confirm its effectiveness.
机译:本文提出了一种基于递归模糊神经网络(RFNN)的模型预测控制方案,该方法利用谷物干燥机的干燥过程温度。在此方案中,有两个RFNN和两个PI控制器。一个具有谷物层历史位置状态的前馈和反馈连接的RFNN可以预测出口水分含量(MPRFNN),而另一个可以预测干燥机的排放速率(RPRFNN)。一个PI控制器通过使用MPRFNN调整排放速率的目标,另一个PI控制器通过使用RPRFNN调整给料电机的给定频率以控制谷物烘干机的排放速率以达到其目标。通过将提出的方案应用于具有四个阶段的增益干燥器的控制来进行实验,以确认其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号