首页> 外文会议>Advances in Natural Computation pt.2; Lecture Notes in Computer Science; 4222 >On-Chip Genetic Algorithm Optimized Pulse Based RBF Neural Network for Unsupervised Clustering Problem
【24h】

On-Chip Genetic Algorithm Optimized Pulse Based RBF Neural Network for Unsupervised Clustering Problem

机译:用于无监督聚类问题的基于遗传算法的基于脉冲的RBF神经网络优化

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a new technique for solving the unsupervised clustering problem using a pulse based RBF neural network that is optimized by a genetic algorithm. In this new approach, the neuron encodes the information using the firing times of pulses that are generated by the neurons. Due to hardware's speed advantage and its ability to parallelize along with reprogramability and reconfigurability, the field programmable gate array (FPGA) is used for implementing the proposed approach on-chip. The developed on-chip system is capable of solving various problems requiring large data set in real time. Experimental verification using a sample data set and Fisher's Iris data set has shown the feasibility of the developed system.
机译:本文提出了一种新的技术,该技术通过使用基于遗传算法优化的基于脉冲的RBF神经网络来解决无监督聚类问题。在这种新方法中,神经元使用由神经元生成的脉冲的触发时间对信息进行编码。由于硬件的速度优势以及其与可重编程性和可重配置性并行化的能力,现场可编程门阵列(FPGA)用于在芯片上实现所提出的方法。开发的片上系统能够实时解决需要大数据集的各种问题。使用样本数据集和Fisher的Iris数据集进行的实验验证显示了开发系统的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号