首页> 外文会议>Advances in Natural Computation pt.1; Lecture Notes in Computer Science; 4221 >Model Optimization of Artificial Neural Networks for Performance Predicting in Spot Welding of the Body Galvanized DP Steel Sheets
【24h】

Model Optimization of Artificial Neural Networks for Performance Predicting in Spot Welding of the Body Galvanized DP Steel Sheets

机译:人工镀锌DP钢板点焊性能预测的人工神经网络模型优化

获取原文
获取原文并翻译 | 示例

摘要

This paper focused on the performance predicting problems in the spot welding of the body galvanized DP steel sheets. Artificial neural networks (ANN) were used to describe the mapping relationship between welding parameters and welding quality. After analyzing the limitation existed in standard BP networks, the original model was optimized based on lots of experiments. Lots of experimental data about welding parameters and corresponding spot weld quality were provided to the ANN for study. The results showed that the improved BP model can predict the influence of welding currents on nugget diameters, weld indentation and the shear loads ratio of spot welds. The forecasting precision was so high that can satisfy the practical need of engineering and have some application value.
机译:本文着重于车身镀锌DP钢板点焊的性能预测问题。人工神经网络(ANN)被用来描述焊接参数和焊接质量之间的映射关系。在分析标准BP网络中存在的局限性之后,基于大量实验对原始模型进行了优化。 ANN提供了大量有关焊接参数和相应点焊质量的实验数据。结果表明,改进的BP模型可以预测焊接电流对点焊直径,焊缝压痕和剪切载荷比的影响。预测精度很高,可以满足工程实际需要,具有一定的应用价值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号