首页> 外文会议>Advances in Natural Computation pt.1; Lecture Notes in Computer Science; 4221 >Container Image Recognition Using ART2-Based Self-organizing Supervised Learning Algorithm
【24h】

Container Image Recognition Using ART2-Based Self-organizing Supervised Learning Algorithm

机译:基于ART2的自组织监督学习算法的集装箱图像识别

获取原文
获取原文并翻译 | 示例

摘要

This paper proposed an automatic recognition system of shipping container identifiers using fuzzy-based noise removal method and ART2-based self-organizing supervised learning algorithm. Generally, identifiers of a shipping container have a feature that the color of characters is black or white. Considering such a feature, in a container image, all areas excepting areas with black or white colors are regarded as noises, and areas of identifiers and noises are discriminated by using a fuzzy-based noise detection method. Noise areas are replaced with a mean pixel value of the whole image and areas of identifiers are extracted by applying the edge detection by Sobel masking operation and the vertical and horizontal block extraction in turn to the noise-removed image. Extracted areas are binarized by using the iteration binarization algorithm, and individual identifiers are extracted by applying 8-directional contour tacking method. This paper proposed an ART2-based self-organizing supervised learning algorithm for the identifier recognition, which creates nodes of the hidden layer by applying ART2 between the input and the hidden layers and improves the performance of learning by applying generalized delta learning and Delta-bar-Delta algorithm between the hidden and the output layers. Experiments using many images of shipping containers showed that the proposed identifier extraction method and the ART2-based self-organizing supervised learning algorithm are more improved compared with the methods previously proposed.
机译:提出了一种基于模糊噪声消除和基于ART2的自组织监督学习算法的集装箱识别码自动识别系统。通常,运输集装箱的标识符具有字符颜色为黑色或白色的特征。考虑到这种特征,在容器图像中,将具有黑色或白色的区域以外的所有区域都视为噪声,并且通过使用基于模糊的噪声检测方法来区分标识符和噪声的区域。将噪声区域替换为整个图像的平均像素值,并通过对Sobel进行遮罩操作进行边缘检测,然后对去除噪声的图像进行垂直和水平块提取,从而提取出标识符区域。通过使用迭代二值化算法对提取的区域进行二值化,并通过使用8方向轮廓定位方法提取单个标识符。提出了一种基于ART2的自组织监督学习算法进行标识符识别,该算法通过在输入层和隐藏层之间应用ART2来创建隐藏层的节点,并通过应用广义增量学习和Delta-bar来提高学习性能。 -隐藏层和输出层之间的-Delta算法。使用许多集装箱图像进行的实验表明,与先前提出的方法相比,所提出的标识符提取方法和基于ART2的自组织监督学习算法得到了更大的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号