首页> 外文会议>Advances in Natural Computation pt.1; Lecture Notes in Computer Science; 4221 >A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem
【24h】

A Global Archive Sub-Population Genetic Algorithm with Adaptive Strategy in Multi-objective Parallel-Machine Scheduling Problem

机译:多目标并行机调度问题的自适应策略全局存档子种群遗传算法

获取原文
获取原文并翻译 | 示例

摘要

This research extends the sub-population genetic algorithm and combines it with a global archive and an adaptive strategy to solve the multi-objective parallel scheduling problems. In this approach, the global archive is applied within each subpopulation and once a better Pareto solution is identified, other subpopulations are able to employ this Pareto solution to further guide the searching direction. In addition, the crossover and mutation rates are continuously adapted according to the performance of the current generation. As a result, the convergence and diversity of the evolutionary processes can be maintained in a very efficient manner. Intensive experimental results indicate that the sub-population genetic algorithm combing the global archive and the adaptive strategy outperforms NSGA II and SPEA II approaches.
机译:该研究扩展了子种群遗传算法,并将其与全局存档和自适应策略相结合,以解决多目标并行调度问题。在这种方法中,将全局存档应用于每个子种群中,并且一旦确定了更好的Pareto解决方案,其他子种群便能够使用该Pareto解决方案来进一步指导搜索方向。此外,交叉转换率和突变率会根据当前一代的性能不断进行调整。结果,可以以非常有效的方式维持进化过程的收敛性和多样性。密集的实验结果表明,将全局存档和自适应策略相结合的子种群遗传算法优于NSGA II和SPEA II方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号