首页> 外文会议>Advances in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; 4426 >Geo-spatial Clustering with Non-spatial Attributes and Geographic Non-overlapping Constraint: A Penalized Spatial Distance Measure
【24h】

Geo-spatial Clustering with Non-spatial Attributes and Geographic Non-overlapping Constraint: A Penalized Spatial Distance Measure

机译:具有非空间属性和地理不重叠约束的地理空间聚类:惩罚性空间距离测度

获取原文
获取原文并翻译 | 示例

摘要

In many geography-related problems, clustering technologies are widely required to identify significant areas containing spatial objects, particularly, the object with non-spatial attributes. At most of times, the resultant geographic areas should satisfy the geographic non-overlapping constraint. That is, the areas should not be overlapped with other areas. If without non-spatial attributes, most spatial clustering approaches can obtain such results. But in the presence of non-spatial attributes, many clustering methods can not guarantee this condition, since the clustering results may be dominated in non-spatial attribute domain which can not reflect the geographic constraint. In this paper, a new spatial distance measure called penalized spatial distance (PSD) is presented, and it is proofed to satisfy the condition which can guarantee the constraint. PSD achieves this by well adjusting the spatial distance between two points according to the non-spatial attribute values between them. The clustering effectiveness of PSD incorporated with CLARANS is evaluated on both artificial data sets and a real banking analysis case. It demonstrates that PSD can effectively discover the non-spatial knowledge and contribute more reasonably to spatial clustering problem solving.
机译:在许多与地理相关的问题中,广泛地需要聚类技术来识别包含空间对象的重要区域,尤其是具有非空间属性的对象。在大多数情况下,所得的地理区域应满足地理不重叠的约束。即,这些区域不应与其他区域重叠。如果没有非空间属性,则大多数空间聚类方法都可以获得这种结果。但是在存在非空间属性的情况下,许多聚类方法不能保证这种情况,因为聚类结果可能在非空间属性域中占主导地位,这不能反映地理约束。本文提出了一种新的空间距离测度,称为罚空间距离(PSD),并证明其满足可以保证约束的条件。 PSD通过根据两点之间的非空间属性值很好地调整两点之间的空间距离来实现此目的。结合CLARANS的PSD的聚类效果在人工数据集和真实银行业务分析案例中均得到了评估。它表明PSD可以有效地发现非空间知识,并更合理地为解决空间聚类问题做出贡献。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号