首页> 外文会议>Advances in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; 4426 >A Modified Relationship Based Clustering Framework for Density Based Clustering and Outlier Filtering on High Dimensional Datasets
【24h】

A Modified Relationship Based Clustering Framework for Density Based Clustering and Outlier Filtering on High Dimensional Datasets

机译:用于高密度数据集上基于密度的聚类和离群值过滤的基于关系的聚类改进框架

获取原文
获取原文并翻译 | 示例

摘要

In this study, we propose a modified version of relationship based clustering framework dealing with density based clustering and outlier detection in high dimensional datasets. Originally, relationship based clustering framework is based on METIS. Therefore, it has some drawbacks such as no outlier detection and difficulty of determining the number of clusters. We propose two improvements over the framework. First, we introduce a new space which consists of tiny partitions created by METIS, hence we call it micro-partition space. Second, we used DBSCAN for clustering micro-partition space. The visualization of the results are carried out by CLUSION. Our experiments have shown that, our proposed framework produces promising results on high dimensional datasets.
机译:在这项研究中,我们提出了一种基于关系的聚类框架的改进版本,该框架处理高维数据集中基于密度的聚类和离群值检测。最初,基于关系的聚类框架基于METIS。因此,它具有一些缺点,例如没有异常检测和难以确定簇数。我们建议对该框架进行两项改进。首先,我们引入一个新空间,该空间由METIS创建的微小分区组成,因此我们将其称为微分区空间。其次,我们使用DBSCAN对微分区空间进行集群。结果的可视化通过CLUSION进行。我们的实验表明,我们提出的框架在高维数据集上产生了可喜的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号