首页> 外文会议>Advances in neural networks - ISNN 2011 >A New Model Reference Adaptive Control of PMSM Using Neural Network Generalized Inverse
【24h】

A New Model Reference Adaptive Control of PMSM Using Neural Network Generalized Inverse

机译:基于神经网络广义逆的PMSM模型参考自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

A new strategy of model reference adaptive control (MRAC) system based on neural network generalized inverse (NNGI) algorithm, termed as MRAC-NNGI system, is proposed for the current and speed regulations of permanent magnet synchronous motor (PMSM) drives. Due to the fact that PMSM is a multivariable nonlinear system with strong couplings, this paper gives an analysis of generalized reversibility combined with NN. The developed scheme of NNGI is transformed into a pseudo-linear system from connecting the motor plant and achieved the purposes of decoupling and linearization with Levenberg-Marquardt algorithm off-line. Therefore, an adjustable gain of closed-loop adaptive controller is developed by introducing MRAC into this kind of pseudo-linear system. The self-adaptive law is given for the gain regulation of linear system. Comparison of simulation results from others widely used algorithms confirm that it incorporates the merits of model-free learning, high-precision tracking and strong anti-interference capability.
机译:针对永磁同步电动机(PMSM)驱动器的电流和速度调节问题,提出了一种基于神经网络广义逆(NNGI)算法的模型参考自适应控制(MRAC)系统新策略,称为MRAC-NNGI系统。由于PMSM是具有强耦合的多变量非线性系统,因此本文结合NN对广义可逆性进行了分析。所开发的NNGI方案通过连接发动机来转化为伪线性系统,并通过离线Levenberg-Marquardt算法实现了去耦和线性化的目的。因此,通过将MRAC引入这种伪线性系统中,开发了一种可调增益的闭环自适应控制器。给出了线性系统增益调节的自适应律。通过与其他广泛使用的算法的仿真结果进行比较,证实了它具有无模型学习,高精度跟踪和强大的抗干扰能力的优点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号