首页> 外文会议>Advances in data mining : Applications and theoretical aspects >Moving Targets When Data Classes Depend on Subjective Judgement, or They Are Crafted by an Adversary to Mislead Pattern Analysis Algorithms - The Cases of Content Based Image Retrieval and Adversarial Classification
【24h】

Moving Targets When Data Classes Depend on Subjective Judgement, or They Are Crafted by an Adversary to Mislead Pattern Analysis Algorithms - The Cases of Content Based Image Retrieval and Adversarial Classification

机译:当数据类别取决于主观判断或由对手精心设计以误导模式分析算法时移动目标-基于内容的图像检索和对抗分类的案例

获取原文
获取原文并翻译 | 示例

摘要

The vast majority of pattern recognition applications assume that data can be subdivided into a number of data classes on the basis of the values of a set of suitable features. Supervised techniques assume the data classes are given in advance, and the goal is to find the most suitable set of feature and classification algorithm that allows the effective partition of the data. On the other hand, unsupervised techniques allow discovering the "natural" data classes in which data can be partitioned, for a given set of features.These approaches are showing their limitation to handle the challenges issued by applications where, for each instance of the problem, patterns can be assigned to different data classes, and the definition itself of data classes is not uniquely fixed. As a consequence, the set of features providing for an effective discrimination of patterns, and the related discrimination rule, should be set for each instance of the classification problem. Two applications from different domains share similar characteristics: Content-Based Multimedia Retrieval and Adversarial Classification. The retrieval of multimedia data by content is biased by the high subjectivity of the concept of similarity. On the other hand, in an adversarial environment, the adversary carefully craft new patterns so that they are assigned to the incorrect data class. In this paper, the issues of the two application scenarios will be discussed, and some effective solutions and future reearch directions will be outlined.
机译:绝大多数模式识别应用程序都假定可以根据一组适当特征的值将数据细分为多个数据类。有监督的技术假定数据类别是预先给定的,目标是找到最合适的功能和分类算法集,以实现数据的有效分区。另一方面,无监督技术允许针对给定的功能集发现可以在其中划分数据的“自然”数据类。这些方法显示了它们在处理针对每种情况的应用程序所提出的挑战方面的局限性可以将模式分配给不同的数据类,并且数据类的定义本身不是唯一固定的。因此,应该为分类问题的每个实例设置提供有效识别模式的功能集以及相关的识别规则。来自不同领域的两个应用程序具有相似的特征:基于内容的多媒体检索和对抗分类。通过内容检索多媒体数据受相似性概念的高度主观性的偏见。另一方面,在对抗环境中,对手会精心制作新模式,以便将其分配给错误的数据类。在本文中,将讨论这两个应用场景的问题,并概述一些有效的解决方案和将来的研究方向。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号