首页> 外文会议>Advances in data mining : Applications and theoretical aspects >Screening Paper Runnability in a Web-Offset Pressroom by Data Mining
【24h】

Screening Paper Runnability in a Web-Offset Pressroom by Data Mining

机译:通过数据挖掘在网络胶印机室中筛选纸张运行性能

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with data mining techniques for identifying the main parameters of the printing press, the printing process and paper affecting the occurrence of paper web breaks in a pressroom. Two approaches are explored. The first one treats the problem as a task of data classification into "break" and "non break" classes. The procedures of classifier design and selection of relevant input variables are integrated into one process based on genetic search. The search process results in a set of input variables providing the lowest average loss incurred in taking decisions. The second approach, also based on genetic search, combines procedures of input variable selection and data mapping into a low dimensional space. The tests have shown that the web tension parameters are amongst the most important ones. It was also found that, provided the basic off-line paper parameters are in an acceptable range, the paper related parameters recorded online contain more information for predicting the occurrence of web breaks than the off-line ones. Using the selected set of parameters, on average, 93.7% of the test set data were classified correctly. The average classification accuracy of the break cases was equal to 76.7%.
机译:本文涉及用于识别印刷机主要参数的数据挖掘技术,印刷过程和纸张会影响印刷室中纸幅断裂的发生。探索了两种方法。第一个将问题视为将数据分类为“中断”和“不中断”类的任务。基于遗传搜索,将分类器设计和相关输入变量的选择过程集成到一个过程中。搜索过程导致一组输入变量,这些变量提供了做出决策时发生的最低平均损失。第二种方法也基于遗传搜索,将输入变量选择和数据映射过程组合到一个低维空间中。测试表明,幅材张力参数是最重要的参数之一。还发现,只要基本的离线纸张参数在可接受的范围内,在线记录的纸张相关参数将比离线纸张包含更多的信息来预测纸幅断裂的发生。使用选定的参数集,平均正确地对93.7%的测试集数据进行了分类。中断案例的平均分类准确度等于76.7%。

著录项

  • 来源
  • 会议地点 Leipzig(DE);Leipzig(DE)
  • 作者单位

    Intelligent Systems Laboratory, Halmstad University, Box 823, S-30H8 Halmstad, Sweden;

    Intelligent Systems Laboratory, Halmstad University, Box 823, S-30H8 Halmstad, Sweden Kaunas University of Technology, Studentu 50, LT-51368, Kaunas, Lithuania;

    Intelligent Systems Laboratory, Halmstad University, Box 823, S-30H8 Halmstad, Sweden;

    Kaunas University of Technology, Studentu 50, LT-51368, Kaunas, Lithuania;

    Kaunas University of Technology, Studentu 50, LT-51368, Kaunas, Lithuania;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP311.13;
  • 关键词

    classifier; GA; mapping; variable selection; web break;

    机译:分类器GA;映射变量选择;网页中断;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号