首页> 外文会议>Advanced Concepts for Intelligent Vision Systems >Open or Closed Mouth State Detection: Static Supervised Classification Based on Log-Polar Signature
【24h】

Open or Closed Mouth State Detection: Static Supervised Classification Based on Log-Polar Signature

机译:张口或张口状态检测:基于对数极性签名的静态监督分类

获取原文
获取原文并翻译 | 示例

摘要

The detection of the state open or closed of mouth is an important information in many applications such as hypo-vigilance analysis, face features segmentation or emotions recognition. In this work we propose a supervised classification method for mouth state detection based on retina filtering and cortex analysis inspired by the human visual system. The first stage of the method is the learning of reference signatures (Log Polar Spectrums) from some open and closed mouth images manually classified. The signatures are constructed by computing the amplitude log-polar spectrum of the retina filtered images. Principal Components Analysis (PCA) is then performed using the Log Polar Spectrum as feature vectors to reduce the number of dimension by keeping 95 % of the total variance. Finally a binary SVM classifier is trained using the projections the principal components given by the PCA in order to classify the mouth.
机译:在许多应用中,例如低警觉性分析,面部特征分割或情绪识别,检测张开或闭合状态是重要的信息。在这项工作中,我们提出了一种基于视网膜过滤和受人类视觉系统启发的皮质分析的口腔状态检测的监督分类方法。该方法的第一步是从一些手动分类的张口和张口图像中学习参考签名(对数极谱)。通过计算视网膜滤波图像的幅度对数极谱来构造签名。然后使用对数极谱作为特征向量执行主成分分析(PCA),以通过保留95%的总方差来减少维数。最后,使用由PCA给出的主要成分的投影来训练二进制SVM分类器,以便对嘴进行分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号