【24h】

Piezoelectric Optical MEMS Scanning Fluorescence Biosensor

机译:压电光学MEMS扫描荧光生物传感器

获取原文
获取原文并翻译 | 示例

摘要

Fluorescence spectroscopy plays a key role in a broad area of biological and medical applications. Development of fluorescence spectroscopy micro-devices will enable construction of fully integrated platforms for clinical diagnostics. We report the design, microfabrication and testing of a piezoelectric MEMS micro-grating as a part of the development of a combined spectral/time-resolved fluorescence biosensor for tissue characterization. For the design of the device, we simulated its theoretical performance using a piezoelectric multi-morph model with appropriate diffraction geometry. The microfabrication process was based on a SiN diaphragm (formed via KOH bulk-micromachining) on which the supporting layer of the micro-cantilevers was patterned. Piezoelectric ZnO was then magnetron sputtered and patterned on the cantilever as the physical source for linear actuation with low voltage (>32V). E-beam evaporation of aluminum formed the final reflective diffraction pattern as well as the electrode connections to the device units. The device actuation and displacement were characterized using LDDM (Laser Doppler Displacement Meter). Current cantilevers designed with 500 μm wide gratings (20 μm spacing) produced a maximum 38 μm bi-polar deflection at 3.5 kHz, with scanning from 350-650 nm at 26 nm resolution (10 nm with new 10 μm period prototype). The MEMS device was designed to be integrated with a fast response photomultiplier, and thus can be used with time-resolved fluorescence detection. Because in the case of time-resolved measurements, spectral resolution is not a crucial element, this configuration allows for the compensation of the geometric limitations (linear dispersion) of a micro-scale device that require wavelength differentiation and selection.
机译:荧光光谱在生物学和医学应用的广泛领域中起着关键作用。荧光光谱微设备的开发将能够构建用于临床诊断的完全集成的平台。我们报告了压电MEMS微光栅的设计,微加工和测试,作为组合光谱/时间分辨荧光生物传感器用于组织表征的开发的一部分。对于设备的设计,我们使用具有适当衍射几何形状的压电多晶形模型模拟了其理论性能。微型加工过程基于SiN膜片(通过KOH块体微加工形成),在其上构图了微型悬臂的支撑层。然后,在悬臂上磁控溅射ZnO并对其进行构图,以作为低压(> 32V)线性驱动的物理源。铝的电子束蒸发形成最终的反射衍射图样以及与设备单元的电极连接。使用LDDM(激光多普勒位移计)对设备的致动和位移进行表征。设计有500μm宽光栅(间隔20μm)的当前悬臂在3.5 kHz时产生最大38μm双极偏转,在26 nm分辨率下从350-650 nm扫描(对于新的10μm周期原型为10 nm)。 MEMS设备被设计为与快速响应光电倍增管集成在一起,因此可以与时间分辨荧光检测一起使用。因为在时间分辨的测量中,光谱分辨率不是关键因素,所以这种配置可以补偿需要波长区分和选择的微型设备的几何限制(线性色散)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号