首页> 外文会议>Adaptive and natural computing algorithms >Automatic Discriminative Lossy Binary Conversion of Redundant Real Training Data Inputs for Simplifying an Input Data Space and Data Representation
【24h】

Automatic Discriminative Lossy Binary Conversion of Redundant Real Training Data Inputs for Simplifying an Input Data Space and Data Representation

机译:冗余实际训练数据输入的自动有区别二进制有损转换,以简化输入数据空间和数据表示

获取原文
获取原文并翻译 | 示例

摘要

Many times we come across the need to simplify or reduce an input data space in order to achieve a better model or better performance of an artificial intelligence solution. The well known PCA, ICA and rough sets can simplify and reduce input data space but they cannot transform real input data vectors into binary ones. Binary training vectors can simplify a training process of neural networks and let them to construct more compact topologies. This paper introduces a new algorithm that reduces input data space and simultaneously automatically lossy transforms real input training data vectors into binary vectors so that they do not lose their discrimination properties. The problem is how to effectively transform real input training data vectors into binary vectors so that an input data space could be simplified and the transformed binary vectors would be enough representative to be able to discriminate all training samples of all classes correctly? The described lossy conversion makes possible to achieve better generalization results for various soft-computing algorithms, can be widely used and avoids the curse of dimensionality problem. This paper introduces a new Automatic Discriminative Lossy Binary Conversion Algorithm (ADLBCA) that is able to solve all these tasks. Generally, no other method can simultaneously and so fast do all these tasks.
机译:许多时候,我们遇到了简化或减少输入数据空间的需求,以实现人工智能解决方案的更好模型或更好性能。众所周知的PCA,ICA和粗糙集可以简化和减少输入数据空间,但是它们不能将实际的输入数据向量转换为二进制向量。二进制训练向量可以简化神经网络的训练过程,并使其构建更紧凑的拓扑。本文介绍了一种新算法,该算法可减少输入数据空间,同时自动将实际的输入训练数据向量有损地转换为二进制向量,以使它们不会失去其识别特性。问题是如何有效地将实际输入的训练数据向量转换为二进制向量,从而简化输入数据空间,并且转换后的二进制向量将具有足够的代表性,从而能够正确地区分所有类别的所有训练样本?所描述的有损转换使得对于各种软计算算法可以获得更好的泛化结果,可以被广泛使用并且避免了维数问题的诅咒。本文介绍了一种新的自动判别有损二进制转换算法(ADLBCA),它能够解决所有这些任务。通常,没有其他方法可以同时快速地完成所有这些任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号