首页> 外文会议>Adaptive Multimedia Retrieval: Retrieval, User, and Semantics >A Novel Retrieval Refinement and Interaction Pattern by Exploring Result Correlations for Image Retrieval
【24h】

A Novel Retrieval Refinement and Interaction Pattern by Exploring Result Correlations for Image Retrieval

机译:通过探索图像检索结果相关性的新型检索细化和交互模式

获取原文
获取原文并翻译 | 示例

摘要

Efficient retrieval of image database that contains multiple predefined categories (e.g. medical imaging databases, museum painting collections) poses significant challenges and commercial prospects. By exploring category correlations of retrieval results in such scenario, this paper presents a novel retrieval refinement and feedback framework. It provides users a novel perceptual-similar interaction pattern for topic-based image retrieval. Firstly, we adopts Pairwise-Coupling SVM (PWC-SVM) to classify retrieval results into predefined image categories, and reorganizes them into category-based browsing topics. Secondly, in feedback interaction, category operation is supported to capture users' retrieval purpose fast and efficiently, which differs from traditional relevance feedback patterns that need elaborate image labeling. Especially, an Asymmetry Bagging SVM (ABSVM) network is adopted to precisely capture users' retrieval purpose. And user interactions are accumulated to reinforce our inspections of image database. As demonstrated in experiments, remarkable feedback simplifications are achieved comparing to traditional interaction patterns based on image labeling. And excellent feedback efficiency enhancements are gained comparing to traditional SVM-based feedback learning methods.
机译:有效检索包含多个预定义类别的图像数据库(例如医学影像数据库,博物馆绘画收藏)提出了巨大的挑战,并具有商业前景。通过探索这种情况下检索结果的类别相关性,本文提出了一种新颖的检索改进和反馈框架。它为用户提供了一种新颖的感知相似交互模式,用于基于主题的图像检索。首先,我们采用成对耦合SVM(PWC-SVM)将检索结果分类为预定义的图像类别,然后将它们重新组织为基于类别的浏览主题。其次,在反馈交互中,支持类别操作以快速有效地捕获用户的检索目的,这与需要详细图像标记的传统相关性反馈模式不同。特别是,采用不对称装袋支持向量机(ABSVM)网络来精确捕获用户的检索目的。并积累了用户互动,以加强我们对图像数据库的检查。如实验所示,与传统的基于图像标记的交互模式相比,反馈得到了极大的简化。与传统的基于SVM的反馈学习方法相比,获得了出色的反馈效率增强。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号