Abstract: An objective of the Wideband Angular Vibration Experiment (WAVE) is to measure optical bench vibrations of the Relay Mirror Experiment (RME) laser beacon tracker. The WAVE sensor package measures six degrees of freedom of optical bench base motion over a frequency band of 1-1,000 Hz. The WAVE package is comprised of 16 sensors: three angular displacement sensors, six magnetohydrodynamic (MHD) angular rate sensors, and seven linear accelerometers. Redundant angular measurements allow the qualifying of the MHD sensor for space operation. The noise floor of the angular measurements, integrated over the full frequency band, is less than 0.1 $mu@rad in each axis. Measurements taken while tracking an internal self-check laser diode indicate that vibrations from attitude control system horizon scanners, reaction wheel, and excited structural modes in the beacon tracker optical assembly dominate the base motion environment. Most of the vibrations are narrow band with amplitudes on the order of 10.0 nanoradians. Coherence analysis between WAVE sensors and unrejected quad cell errors indicates that track performance during self-check is limited by base motion.!
展开▼